File size: 4,162 Bytes
20a070f c91441b 20a070f c91441b 20a070f c91441b 20a070f c91441b 20a070f c91441b 20a070f c91441b 20a070f c91441b 20a070f c91441b 20a070f c91441b 5382507 20a070f c91441b c61b22c 20a070f c91441b 20a070f c91441b 20a070f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import argparse
import asyncio
import functools
import json
import os
from io import BytesIO
import uvicorn
from fastapi import FastAPI, Body, Request
# from fastapi.responses import StreamingResponse
# from starlette.staticfiles import StaticFiles
# from starlette.templating import Jinja2Templates
from sentence_transformers import SentenceTransformer, models
def print_arguments(args):
print("----------- Configuration Arguments -----------")
for arg, value in vars(args).items():
print("%s: %s" % (arg, value))
print("------------------------------------------------")
def strtobool(val):
val = val.lower()
if val in ('y', 'yes', 't', 'true', 'on', '1'):
return True
elif val in ('n', 'no', 'f', 'false', 'off', '0'):
return False
else:
raise ValueError("invalid truth value %r" % (val,))
def str_none(val):
if val == 'None':
return None
else:
return val
def add_arguments(argname, type, default, help, argparser, **kwargs):
type = strtobool if type == bool else type
type = str_none if type == str else type
argparser.add_argument(
"--" + argname,
default=default,
type=type,
help=help + ' Default: %(default)s.',
**kwargs
)
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
add_arg("host", type=str, default="0.0.0.0", help="")
add_arg("port", type=int, default=5000, help="")
add_arg("model_path", type=str, default="BAAI/bge-small-en-v1.5", help="")
add_arg("use_gpu", type=bool, default=False, help="")
# add_arg("use_int8", type=bool, default=True, help="")
add_arg("beam_size", type=int, default=10, help="")
add_arg("num_workers", type=int, default=2, help="")
add_arg("vad_filter", type=bool, default=True, help="")
add_arg("local_files_only", type=bool, default=True, help="")
args = parser.parse_args()
print_arguments(args)
if args.use_gpu:
bge_model = SentenceTransformer(args.model_path, device="cuda", compute_type="float16", cache_folder=".")
else:
bge_model = SentenceTransformer(args.model_path, device='cpu', cache_folder=".")
if args.use_gpu:
model_name = 'sam2ai/sbert-tsdae'
word_embedding_model = models.Transformer(model_name)
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), 'cls')
tsdae_model = SentenceTransformer(
modules=[word_embedding_model, pooling_model],
device="cuda",
compute_type="float16",
cache_folder="."
)
else:
model_name = 'sam2ai/sbert-tsdae'
word_embedding_model = models.Transformer(model_name)
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), 'cls')
tsdae_model = SentenceTransformer(
modules=[word_embedding_model, pooling_model],
device='cpu',
cache_folder="."
)
app = FastAPI(title="embedding Inference")
def similarity_score(model, textA, textB):
em_test = model.encode(
[textA, textB],
normalize_embeddings=True
)
return em_test[0] @ em_test[1].T
@app.post("/bge_embed")
async def api_bge_embed(
text1: str = Body("text1", description="", embed=True),
text2: str = Body("text2", description="", embed=True),
):
scores = similarity_score(bge_model, text1, text2)
print(scores)
scores = scores.tolist()
ret = {"similarity score": scores, "status_code": 200}
return ret
@app.post("/tsdae_embed")
async def api_tsdae_embed(
text1: str = Body("text1", description="", embed=True),
text2: str = Body("text2", description="", embed=True),
):
scores = similarity_score(tsdae_model, text1, text2)
print(scores)
scores = scores.tolist()
ret = {"similarity score": scores, "status_code": 200}
return ret
@app.get("/")
async def index(request: Request):
return {"detail": "API is Active !!"}
if __name__ == '__main__':
uvicorn.run(app, host=args.host, port=args.port) |