File size: 4,162 Bytes
20a070f
 
 
 
 
 
 
 
c91441b
 
 
 
 
20a070f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c91441b
 
 
 
 
 
 
 
20a070f
 
 
c91441b
20a070f
 
 
c91441b
20a070f
 
 
 
 
 
 
 
 
c91441b
 
20a070f
 
 
c91441b
 
 
 
 
 
 
 
 
20a070f
c91441b
 
 
 
 
 
 
 
 
20a070f
c91441b
 
 
 
 
 
 
 
20a070f
 
 
 
c91441b
 
5382507
 
 
 
 
 
20a070f
c91441b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c61b22c
 
20a070f
 
c91441b
20a070f
 
 
 
 
 
 
c91441b
 
 
20a070f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import argparse
import asyncio
import functools
import json
import os
from io import BytesIO

import uvicorn
from fastapi import FastAPI, Body, Request
# from fastapi.responses import StreamingResponse
# from starlette.staticfiles import StaticFiles
# from starlette.templating import Jinja2Templates
from sentence_transformers import SentenceTransformer, models



def print_arguments(args):
    print("-----------  Configuration Arguments -----------")
    for arg, value in vars(args).items():
        print("%s: %s" % (arg, value))
    print("------------------------------------------------")


def strtobool(val):
    val = val.lower()
    if val in ('y', 'yes', 't', 'true', 'on', '1'):
        return True
    elif val in ('n', 'no', 'f', 'false', 'off', '0'):
        return False
    else:
        raise ValueError("invalid truth value %r" % (val,))

def str_none(val):
    if val == 'None':
        return None
    else:
        return val

def add_arguments(argname, type, default, help, argparser, **kwargs):
    type = strtobool if type == bool else type
    type = str_none if type == str else type
    argparser.add_argument(
        "--" + argname,
        default=default,
        type=type,
        help=help + ' Default: %(default)s.',
        **kwargs
    )


os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'


parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)


add_arg("host",        type=str,  default="0.0.0.0", help="")
add_arg("port",        type=int,  default=5000,        help="")
add_arg("model_path",  type=str,  default="BAAI/bge-small-en-v1.5", help="")
add_arg("use_gpu",     type=bool, default=False,   help="")
# add_arg("use_int8",    type=bool, default=True,  help="")
add_arg("beam_size",   type=int,  default=10,     help="")
add_arg("num_workers", type=int,  default=2,      help="")
add_arg("vad_filter",  type=bool, default=True,  help="")
add_arg("local_files_only", type=bool, default=True, help="")


args = parser.parse_args()
print_arguments(args)



if args.use_gpu:
    bge_model = SentenceTransformer(args.model_path, device="cuda", compute_type="float16", cache_folder=".")
else:
    bge_model = SentenceTransformer(args.model_path, device='cpu', cache_folder=".")



if args.use_gpu:
    model_name = 'sam2ai/sbert-tsdae'
    word_embedding_model = models.Transformer(model_name)
    pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), 'cls')
    tsdae_model = SentenceTransformer(
        modules=[word_embedding_model, pooling_model],
        device="cuda",
        compute_type="float16",
        cache_folder="."
    )
else:
    model_name = 'sam2ai/sbert-tsdae'
    word_embedding_model = models.Transformer(model_name)
    pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), 'cls')
    tsdae_model = SentenceTransformer(
        modules=[word_embedding_model, pooling_model],
        device='cpu',
        cache_folder="."
    )


app = FastAPI(title="embedding Inference")


def similarity_score(model, textA, textB):
    em_test = model.encode(
        [textA, textB],
        normalize_embeddings=True
    )
    return em_test[0] @ em_test[1].T


@app.post("/bge_embed")
async def api_bge_embed(
            text1: str = Body("text1", description="", embed=True),
            text2: str = Body("text2", description="", embed=True),
        ):

    scores = similarity_score(bge_model, text1, text2)
    print(scores)
    scores = scores.tolist()

    ret = {"similarity score": scores, "status_code": 200}
    return ret

@app.post("/tsdae_embed")
async def api_tsdae_embed(
            text1: str = Body("text1", description="", embed=True),
            text2: str = Body("text2", description="", embed=True),
        ):

    scores = similarity_score(tsdae_model, text1, text2)
    print(scores)
    scores = scores.tolist()

    ret = {"similarity score": scores, "status_code": 200}
    return ret


@app.get("/")
async def index(request: Request):
    return {"detail": "API is Active !!"}


if __name__ == '__main__':
    uvicorn.run(app, host=args.host, port=args.port)