File size: 4,390 Bytes
20a070f
 
 
 
 
 
 
 
c91441b
 
 
 
0b80183
c91441b
20a070f
0e4258a
 
 
20a070f
 
 
 
 
c91441b
20a070f
 
 
c91441b
20a070f
 
 
 
 
0e4258a
c91441b
 
20a070f
 
 
c91441b
 
0e4258a
 
 
 
 
 
 
 
 
 
 
c91441b
 
 
 
 
 
0e4258a
20a070f
c91441b
 
 
 
 
 
 
 
 
20a070f
c91441b
 
 
 
 
 
 
 
20a070f
 
0e4258a
 
 
 
 
 
20a070f
0e4258a
 
 
 
c91441b
0e4258a
 
 
 
 
 
 
5382507
20a070f
0e4258a
 
 
0b80183
 
 
 
c91441b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c61b22c
 
20a070f
 
c91441b
20a070f
 
 
 
 
 
0e4258a
 
 
 
 
 
 
 
 
 
 
 
 
20a070f
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import argparse
import asyncio
import functools
import json
import os
from io import BytesIO

import uvicorn
from fastapi import FastAPI, Body, Request
# from fastapi.responses import StreamingResponse
# from starlette.staticfiles import StaticFiles
# from starlette.templating import Jinja2Templates
from utils.utils import add_arguments, print_arguments
from sentence_transformers import SentenceTransformer, models

from gensim.models import Word2Vec
from gensim.utils import simple_preprocess
import numpy as np



os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'


parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)


add_arg("host",        type=str,  default="0.0.0.0", help="")
add_arg("port",        type=int,  default=5000,        help="")
add_arg("model_path",  type=str,  default="BAAI/bge-small-en-v1.5", help="")
add_arg("use_gpu",     type=bool, default=False,   help="")
add_arg("num_workers", type=int,  default=2,      help="")



args = parser.parse_args()
print_arguments(args)



# similarity score func
def similarity_score(model, textA, textB):
    em_test = model.encode(
        [textA, textB],
        normalize_embeddings=True
    )
    return em_test[0] @ em_test[1].T


# BGE embedding

if args.use_gpu:
    bge_model = SentenceTransformer(args.model_path, device="cuda", compute_type="float16", cache_folder=".")
else:
    bge_model = SentenceTransformer(args.model_path, device='cpu', cache_folder=".")


# tsdae embedding
if args.use_gpu:
    model_name = 'sam2ai/sbert-tsdae'
    word_embedding_model = models.Transformer(model_name)
    pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), 'cls')
    tsdae_model = SentenceTransformer(
        modules=[word_embedding_model, pooling_model],
        device="cuda",
        compute_type="float16",
        cache_folder="."
    )
else:
    model_name = 'sam2ai/sbert-tsdae'
    word_embedding_model = models.Transformer(model_name)
    pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), 'cls')
    tsdae_model = SentenceTransformer(
        modules=[word_embedding_model, pooling_model],
        device='cpu',
        cache_folder="."
    )


# word2vec embedding
# Define the calculate_similarity function
def calculate_similarity(sentence1, sentence2):
    # Tokenize the sentences
    tokens1 = simple_preprocess(sentence1)
    tokens2 = simple_preprocess(sentence2)

    # Load or train a Word2Vec model
    # Here, we'll create a simple model for demonstration purposes
    sentences = [tokens1, tokens2]
    model = Word2Vec(sentences, vector_size=100, window=5, min_count=1, sg=0)

    # Calculate the vector representation for each sentence
    vector1 = np.mean([model.wv[token] for token in tokens1], axis=0)
    vector2 = np.mean([model.wv[token] for token in tokens2], axis=0)

    # Calculate cosine similarity
    similarity = np.dot(vector1, vector2) / (np.linalg.norm(vector1) * np.linalg.norm(vector2))
    return similarity



app = FastAPI(title="embedding Inference")

@app.get("/")
async def index(request: Request):
    return {"detail": "API is Active !!"}

@app.post("/bge_embed")
async def api_bge_embed(
            text1: str = Body("text1", description="", embed=True),
            text2: str = Body("text2", description="", embed=True),
        ):

    scores = similarity_score(bge_model, text1, text2)
    print(scores)
    scores = scores.tolist()

    ret = {"similarity score": scores, "status_code": 200}
    return ret

@app.post("/tsdae_embed")
async def api_tsdae_embed(
            text1: str = Body("text1", description="", embed=True),
            text2: str = Body("text2", description="", embed=True),
        ):

    scores = similarity_score(tsdae_model, text1, text2)
    print(scores)
    scores = scores.tolist()

    ret = {"similarity score": scores, "status_code": 200}
    return ret

@app.post("/w2v_embed")
async def api_w2v_embed(
            text1: str = Body("text1", description="", embed=True),
            text2: str = Body("text2", description="", embed=True),
        ):

    scores = calculate_similarity(text1, text2)
    print(scores)
    scores = scores.tolist()

    ret = {"similarity score": scores, "status_code": 200}
    return ret




if __name__ == '__main__':
    uvicorn.run(app, host=args.host, port=args.port)