a9y United States
12y Patent Application Publication o) Pub. No.: US 2024/0192940 A1l

Mesde et al.

US 20240192940A 1

43) Pub. Date: Jun. 13, 2024

(54) VEHICLE SOFTWARE DEPLOYMENT

(71)

(72)

(73)

(21)
(22)

(1)

SERVICE

Applicant:

Inventors:

Assignee:

Appl. No.:
Filed:

Amazon Technologies, Inc., Scattle,
WA (US)

Roland Mesde, Cupertino, CA (US);
Alex Bessonov, San Jose, CA (US);
Paolo Gruenberg Hilario, West Linn,
OR (US); Nitin Giri, Bothell, WA
(US); Stefano Marzani, Mountain

View, CA (US); Gautam Kumar Mani,

San Francisco, CA (US); Brian
Ewanchuk, Redmond, WA (US)

Amazon Technologies, Inc., Seattle,
WA (US)

18/065,563
Dec. 13, 2022

Publication Classification

vehicle software deployment management system 100

(52) U.S. CL
CPC GO6F 8/61 (2013.01); HO4L 67/12

(2013.01); HO4L 67/34 (2013.01)

(57) ABSTRACT

A system comprising one or more computing devices imple-
ments a vehicle software deployment management system.
The vehicle software deployment management system
enables clients to send signed serialized data chunks of a
vehicle software application and a deployment plan for the
soltware application to vehicles using a protocol agnostic
transmission format. The vehicle software deployment man-
agement system may generate a deployment plan that may
be processed by an 1n-vehicle application deployment plan-
ner/orchestrator of the vehicle to deploy the particular
vehicle software application. The vehicle software deploy-
ment management system may send the vehicle software
application using containers to be used by ECU agents of
various ECUs of the wvehicle. Furthermore, the wvehicle
software deployment management system may utilize
received vehicle information to dynamically generate one or
more updated vehicle deployment plans to send to respective
vehicles.

')

! '

vehicle application storage \ extemal |
106 , vehicie

\ application |

y Storage

get vehicle applicafion ; 206

I

el

container images) based on | Leecmmman-
deployment plan 210

Int. CI.
GO6l 8/61 (2006.01)
HO4L 67/00 (2006.01)
HO4L 67/12 (2006.01)
request {o
deploy vehicle
application
200 deployment plan
generafor
104
vehicle
application
(container | cand deployment plan
mages) for a vehicle
204 208

vehicle application transmission module

oo -

chunked transmission of
vehicie application and
deployment plan
170

112

e

chunked vehicle package
transmission queue “F--7--
i z
get vehicie
: appiication
v (container images}
R hased on
E mQ rg;g vice . deployment plan
Lo o I from external
! storage
""""""""""" 214
protocol agnostic
chunked
transmission
216

physical
sensor?
162

physical
sensor#3

164

158

158
physical { | | o
sensor #1 - in-venicle application geployment
160 vehicle planner/orchestrator
communications 120
bus

US 2024/0192940 Al

Jun. 13, 2024 Sheet 1 of 14

Patent Application Publication

} Old

ugel v el
Jauiojsno J8L0)SND

4y
Wweas

ejep

0% 2O
I} T
—> 1senba. 156nbas
justifojdap JustuAojdep
uoijealjdde uoneandde
ueld /21N CTIEY
orl JustwAordap
1A 0ct
YIomsu YIOM)aU
861
861 S1q
75 5T | suopedunwL0)
7T Jojeqsayaioauued hd 09/
_ JuswiAoidap uoneaidde 8jiyen-ul : —1 [#10SUSS
N0 _ jeaisAyd p— e
i chl 011
L 851 9INPOLU UOISSILISUR] 9INpOLL BOUAIAII
T - uoieldde spiysn TN BIED 8]2IYaA
CH10SUBS (| C#J0SUBS | CH 103 aoejdiexiel obei0)s
jeaisAyd || redisAyd uonealdde apiysn Lonealdde ajaiyn
AT i
0/} COF I018J8U8h
ueid JuatuAojdap jusuibeuell jooj ueyd Juswhoidep

pue uonealdde ajoiyan E - 071
0 UOISSIWSuea} payunyd _ YI0Mjau 001 wajsAs justusbeuew JustuAojdap aiemyos 8joiyen

Patent Application Publication Jun. 13, 2024 Sheet 2 of 14 US 2024/0192940 Al

vehicle software deployment management system 100

: i
request to | o : :
- vehicle application storage external
O erooion” i A | elice |
200 deployment plan E storage |
generator get vehicle application 206
104 container images) basedon | Leeeeoo--)
depioyment plan 210

vehicle application transmission module

e e e e e

vehicle 112
application chunked vehicle package
(‘?On tainer send deployment plan transmiszsgn quete 1 g)
images) for a vehicle """'"
204 208 gef vehicle
| application
W Y (container images)
A based on
chunked transmission of E mQ ngsoe ice i deployment plan
vehicle application and Lo .. from external
deployment plan network | storage
170 0 N U S 214
protocol agnostic
chunked
fransmission
216

physical || physical

sensor#? 1 sensor#3
E %ﬁ #2 162 164

—
I 158
hysical |
sensor#1 [| in-vehicle application deployment ~1 £ %/2#7
160 : planner/orchestrator gEe74
— vehicle 150
communications —
bus 168
158

FIG. 2

US 2024/0192940 Al

Jun. 13, 2024 Sheet 3 of 14

Patent Application Publication

e Ol Y7 N~ o
. 986} Sng
_. 75T | SUORRIIUNWILIOD
. O 061 L gpiyen —
_ Emmw 7 F lojesjsayioseuueld “ 091
_ wawAoidep uoneadde soiyan-ur =1 /#40SU8S
_ earsAyd
o o - = = = e o o o o o = | 10T}
—_— %
96| =
CH N0 PGl
Z#N03

abeyoed

1020)040-1)NL

0G [Jojesisayatoueuueid JuswwiAoidap uonedidde afoiyoan-ul

_ 8t
_ 0G¢
) obessaw

| suononysur 5 snjejs pIE
| JustuAojdap bee JOEDOIOP A6 N0 o[NpowW Juisuel]
n N3 — _ SjoIeN-UI
“ - 0pE km%m%m e
! L snjejs abexyoe

/€ /inpow
| g&%mo\wxm LONBIIUNLILIO) foHuou %Mm%%n
! wewAojdep J020j010-}Nnuu 443
_ suoonySur
_
| JuswiAojdep
i 0Z¢ jusbe ND3 I85 1 %3
' [7e7 140 - 756 A% 8|npoL 8NI808
“ &mmws obewr | 77t o " ke
" woneonnuwos| 190 Jebeuew | uoyediade
|
.
_
!
_

09¢
(Snjejs aoiyen)
LIOISSILWSUBI]
asoube
j000j0.d

9i¢
LoISSIUS LR
payunys
aijsoube 1020j04d

US 2024/0192940 Al

Jun. 13, 2024 Sheet 4 of 14

Patent Application Publication

70y
alnjre] JusiAoldap

SNQ SUOREIIUNWILLIOD
D8)OBULI0ISID

¢0

v Ol

p S8|NJ [RUOIIPUOI

pa s J0jebajep |
XSelNo-

q01F g uoneaoy| |

JustuAojdap
Juebunuod

CH I0SUBS
jeaisAyd

9l

cH
10suss [eaisAyd

e85 1

CTIEY

48G1

SNQ SUCHEIAUNWWOD

09}

L
10su8s [eaisAyd

e0Ly v uoljeao

JustiAojdep
Jusbunuoa

55T 2#ND3

Patent Application Publication Jun. 13, 2024 Sheet 5 of 14 US 2024/0192940 A1l

test test deployment request to request selection

on a fleet of application application deployment option

vehicles 520 200 922

521 1
.

vehicle application

fleet

management
102

marketplace
108

vehicle
simulator
910

generate obtain

deploymen feasible
plan deployments

request options
504 520

obtain vehicle
tlata to create

vehicle replica
512

deployment plan generator 104

vehicle software deployment management system 100

request
certification deployment plan and updated

513 vehicle application deployment plan and

506 ”9;‘3"8" K X vehicle application based on
ECU configuration and vehicle c;a;:? stream
vehicle diagnostic data .

Stream
508

physical || physical

ECU#? sensor#2 || sensor #3 .
196

B B | i
B
physical , . . ECU#1
sensort1 L In-vehicle application deployment . 159
160 194

vehicle planner/orchestrator

communications 150
DUS = — . 158

158

US 2024/0192940 Al

Jun. 13, 2024 Sheet 6 of 14

Patent Application Publication

V9 OId

v

L e o e - o - o o o o (/T

suejd uonniexs Pazijedo)

809 " Aejai 1o/pue sjeisusb
P09 2029 e o) ugyd Jusw/Aojdep ureyqo
g uoneddde v uonesydde ojaep

/01N 8joIljaA

9¢¢

¢Sl #N03

a/npoLu i
019 LONEIIUNLILLIOD 709
(7 uoneaydde 1000J0J0-f}NtU | 9/NPOLU BAIB28.
0079 JO JuswiAojdap | ejep 9joijon
g uoneaydde wo.y ejepdn
CTRITEY uoneinbljuod NH3 b7
Jojebejep %sej NH3
I— 7
LOISSIUSURI}
0¢9 ejep ofoiyan
N uorealdde
TITEY 0T
719 lojeq)ssyaiopauueld justiAojdep uoneodde epoiyeA-ui
CH# 104 PUe ¢ N04
S Wwo.j ejep ansoubeip sfoiyen
N pue uoneinbiyuod NHJ

¢09
(uoneoijdde
10} uejd
Jusuwifoydap

806
(eals

elep ansoubeip
9J01ljen pue
uoneinbijuod
o4

US 2024/0192940 Al

Jun. 13, 2024 Sheet 7 of 14

Patent Application Publication

g9 9Old

vl

T e e e o o - o o i o L 0

suejd uonnoaexa pazifeao)

AN,
M q uoneoydde Aejai 1o/pue sjereush o) uejd
w 9079 JuawiAojdep pajepadn uiL)qo
q uoneaydde 1+ | g uoneoydde sAoWe
apIyan m 9|01lan
T B
Inpow —
HOREILINULILIOT _ msnowcmé%&
[000)0I0-DiNW ejep spion
g uoneaydde || v uoneoydde
TTEY] /1N p7e
iojebajop yse) NH 3

219 9inpoLu

UOISSILLISUR]

209 eiep 9/aitjon

N uoneljdde
ofoIYa 0CL
pEY iojeqjseyalosuueld JuswiAoidap uonedijdde ajoiyen-ui
a pue
. ‘N ‘g v suoneaydde
~ 8[oIyoA B)NQLISIPS.

0€9
uejd
Justufojdep
pajepdn

US 2024/0192940 Al

Jun. 13, 2024 Sheet 8 of 14

Patent Application Publication

L Ol

01/ 7l
suoneaidde e Ajgjes
-Uou JeAo suojealidde o0
feonuo Ajajes Aojdep ueyd uonnaexs

L
i
|
i
|
|
i
i
i
'
'
|
i

€0¢9
v Uonealjdde

TOIIEY

e0¢/
v/ uonealdde

[eanuo Ajejes

A EpE S R W R SR S
MR N Y R Wb G b b

q0¢.

g uonealdde g uojjeajjdde

T

1eonLo Ajgjes

f
'
'
'
i
'
'
'
'
'
'
i
i

¢/
N uoneaidde N uoneljdde
1221 A)9jes 801ydA

mmmmmmmmi

paziieao) Aousbisilie sjgeus

9c¢
a|npow
UONBIIUNWIIOD
[020)040-RNW

709
- 9INPOoLL 8AIB28)

BJep 8joIyon

70/
uejd
u0iNd8xe Pazjjeao
Aousbisie
710 ajnpou
A LUOISSILLSUE]
Jojebajop ¥se} N03 ejep 8joiyen
051

lojenisayalousuueld yustuAojdsp uonedldde sjoiyen-u

¢0.
ajqejieneun
SI IOM)BU
0] LUONIBULIOD

jeyj joejep

US 2024/0192940 Al

8 9l
4y
_ (eal)s
_ eiep
0rL . 8J01LoN
— ¢08
0

— jo9jj 9y} Wolf Emmsm -

4 AT Lieal)s ejep 8% @ U iea)s EF
- oF] uejd ansoubelp T O soubelp
= Juswihojdap ajolyoA pue Paseq 8joiyan B
=) LoneInbijuog e 1o} uejd :o.m Eo.mem.s
w Dom “QM MMM@QM " O 7] JUalifid
h ——

- B>
m AT
; 0.8 oJUeofUl
M goualBjul TN TN U0 paseq
u paJeIauab o) —— 198H/CIIYOA
] 10} ueyd
Lo peseq ueid
JuswwiAojdap JuawAojdap
puas

CL
aINPOW UOISSILISURL) uonealdde apiyan

p0L
Jojeisusb

308
80Ul

TN pajelsush

908
T BJBD 8)0IlBA

uejd JustAojdep

)

INPOLL 8oUBIBJUI TN BIED 8j0ILOA

01 WajsAs Jusiuabeueiu JusiuAojdep a/emyos sjoiysA

Patent Application Publication

Patent Application Publication Jun. 13,2024 Sheet 10 of 14 US 2024/0192940 Al

Generate a deployment plan for a set of application packages for use in

implementing a vehicle software application.
910

Generate data chunks for the set of application packages that are
configured to be reconstructed by a vehicle application deployment planner

of a vehicle.
920

Send the deployment plan and the data chunks to the vehicle that cause
the vehicle application deployment planner to generate an execution plan
for implementing the vehicle software application based on the deployment
plan, and cause the vehicle application deployment planner to, upon
determination of full reconstruction of the data chunks for the set of
application packages, carry out the execution plan to implement the vehicle
software application at the vehicle in accordance with the deployment plan.

930

FIG. 9

Patent Application Publication Jun. 13,2024 Sheet 11 of 14 US 2024/0192940 Al

Receive a deployment plan for a set of application packages for use in
implementing a vehicle software application and data chunks for the set of
application packages configured to be reconstructed by a vehicle
application deployment planner of a vehicle.

1010

Generate an execution plan for implementing the vehicle software
application at the vehicle based on the received deployment plan via a

vehicle application deployment planner.
1020

Reconstruct the data chunks.
1030

Determine that the data chunks for the set of application packages are fully

reconstructed.
1040

Cany out the execution plan to implement the vehicle software application

at the vehicle in accordance with the deployment plan.
1050

FIG. 10

Patent Application Publication Jun. 13,2024 Sheet 12 of 14 US 2024/0192940 Al

Receive a stream of vehicle data that includes updates indicating an
electronic control unit (ECU) configuration for a vehicle and diagnostic data
of the vehicle.

1110

Dynamically generate, based on the ECU configuration and/or the
diagnostic data indicated in the stream, the deployment plan for the vehicle

software application.
1120

Send, based on a request to deploy to the vehicle a vehicle software
application, a deployment plan that generates and/or relays localized
execution plans for deploying the vehicle software application and

implements the implement the localized execution plans.
1130

FIG. 11

Patent Application Publication Jun. 13,2024 Sheet 13 of 14 US 2024/0192940 Al

Send from a vehicle of a fleet of vehicles to the dynamic vehicle software
deployment planner, a stream of vehicle data indicating an electronic
control unit (ECU) configuration of the vehicles of the fleet and indicating

diagnostic data of the vehicles of the fleet.
1210

Receive a deployment plan for a distributed vehicle software application
that has been dynamically generated, based on the indications of the

stream, by a cloud-based dynamic vehicle software deployment planner.
1220

Generate and/or relay via an in-vehicle application deployment planner/
orchestrator of the vehicle, localized execution plans for deploying the

distributed vehicle software application based on the deployment plan.
1230

Implement the execution plans at the vehicle to install the distributed

vehicle software application on the vehicle.
1240

FIG. 12

Patent Application Publication Jun. 13,2024 Sheet 14 of 14 US 2024/0192940 Al

computer system 1300

processor processor processor

1310b

I/O interface
1330

memory 1320 network
interface

program data 1340
instructions storage
1329 1335

input/output device(s)
1350

cursor

control || keyboard | | display(s)
device 1370
1360 -
wired anhd/or
wireless network
connection

FIG. 13

US 2024/0192940 Al

VEHICLE SOFTWARE DEPLOYMENT
SERVICE

BACKGROUND

[0001] Modem vehicles, such as cars, trucks, motorcycles,
etc. are often manufactured with electronic sensors and
include computer systems programmed with control algo-
rithms that take mputs from such electronic sensors to
determine various control actions to be taken for the vehicle
or systems 1implemented 1n the vehicles. Some vehicles may
include multiple electronic control units (ECUs) and various
sensor modalities. Additionally, deployment of a vehicle
soltware application may require that the vehicle software
application be compatible with an execution environment of
a particular ECU that the vehicle software application will
be deployed . Moreover, a communication format a
vehicle uses to receive a vehicle software application may
restrict or slowdown the transfer of a software application to
a vehicle.

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] FIG. 1 illustrates a vehicle software deployment
management system that sends signed serialized data chunks
of a vehicle software application and a deployment plan for
the software application to vehicles using a protocol agnos-
tic transmission format, and/or dynamically generates and
sends, based on receirved streams of vehicle data, a deploy-
ment plan for deploying the vehicle software application,
according to some embodiments.

[0003] FIG. 2 1llustrates a more detailed view of a vehicle
soltware deployment management system, 1ts various parts,
and interactions to generate signed serialized data chunks of
the vehicle application and/or deployment plan and sending,
the signed serialized data chunks to a vehicle using a
protocol agnostic transmission format, according to some
embodiments.

[0004] FIG. 3 illustrates a graphical view of an example
in-vehicle application deployment planner/orchestrator of a
vehicle that receives a deployment from a vehicle software
deployment management system and/or receives signed
serialized data chunks of a wvehicle application to be
deployed at the vehicle, wherein the in-vehicle application
deployment planner/orchestrator enables deployment of the
in-vehicle application 1n an execution environment of the
vehicle, according to some embodiments.

[0005] FIG. 4 illustrates a more detailled view of an
in-vehicle application deployment planner/orchestrator for a
vehicle and use of conditional rules of a deployment plan to
deploy a vehicle software application, according to some
embodiments.

[0006] FIG. 5 1llustrates a more detailed view of a vehicle
software deployment management system, 1ts various parts,
and interactions to dynamically generate and send, based on
streams of vehicle data, deployment plans for deploying a
vehicle software application, according to some embodi-
ments.

[0007] FIG. 6A 1llustrates a more detailed view of an
in-vehicle application deployment planner/orchestrator of a
vehicle that uses a deployment plan received from a vehicle
soltware deployment management system to deploy a
vehicle application, wherein the in-vehicle application
deployment planner/orchestrator also sends a stream of ECU
configuration and vehicle diagnostic data from ECUs of the

Jun. 13, 2024

vehicle back to the vehicle software deployment manage-
ment system for use 1n dynamically updating a deployment
plan for deploying in-vehicle applications on the vehicle,
according to some embodiments.

[0008] FIG. 6B illustrates a more detailed view of an
in-vehicle application deployment planner/orchestrator of a
vehicle that redeploys vehicle applications implemented
using various ECUs based on an updated deployment plan
from the vehicle software deployment management system,
according to some embodiments.

[0009] FIG. 7 illustrates a more detailled view of an
in-vehicle application deployment planner/orchestrator of a
vehicle that uses an alternative localized execution plan that
prioritizes availability of safety critical applications over
non-safety critical applications, according to some embodi-
ments.

[0010] FIG. 8 illustrates a vehicle software deployment
management system configured to dynamically generate
deployment plans for vehicle applications based on various
vehicle/vehicle fleet data streams and machine learming
(ML) models, according to some embodiments.

[0011] FIG. 9 illustrates a flowchart of operations per-
formed by a vehicle software deployment management
system to send signed serialized data chunks of a vehicle
software application and/or a deployment plan for the soft-
ware application to vehicles using a protocol agnostic trans-
mission format, according to some embodiments.

[0012] FIG. 10 illustrates a tlowchart of operations per-
formed by an in-vehicle application deployment planner/
orchestrator of a vehicle to carry out an execution plan to
implement a vehicle software application, wherein the
execution plan 1s generated by the in-vehicle application
deployment planner/orchestrator based on a received
deployment plan for the in-vehicle application, according to
some embodiments.

[0013] FIG. 11 1illustrates a flowchart of operations per-
formed by a vehicle software deployment management
system to dynamically generate and send, based on streams
of vehicle data, deployment plans for deploving a vehicle
soltware application, according to some embodiments.

[0014] FIG. 12 illustrates a tlowchart of operations per-
formed by an in-vehicle application deployment planner/
orchestrator of a vehicle to carry out an execution plan to
implement a vehicle software application according to a
dynamically generated deployment plan received by the
in-vehicle application deployment planner/orchestrator,
according to some embodiments.

[0015] FIG. 13 illustrates a block diagram illustrating an
example computer system that implements some or all of the
techniques described herein, according to some embodi-
ments.

[0016] While embodiments are described herein by way of
example for several embodiments and illustrative drawings,
those skilled 1n the art will recognize that embodiments are
not limited to the embodiments or drawings described. It
should be understood that the drawings and detailed descrip-
tion thereto are not mtended to limit embodiments to the
particular form disclosed, but on the contrary, the intention
1s to cover all modifications, equivalents and alternatives
talling within the spirit and scope as defined by the appended
claims. The headings used herein are for organizational
purposes only and are not meant to be used to limit the scope
of the description or the claims. As used throughout this
application, the word “may” 1s used 1n a permissive sense

US 2024/0192940 Al

(c.g., meaning having the potential to), rather than the
mandatory sense (e.g., meaning must). Similarly, the words

“include,” “including,” and “includes” mean including, but
not limited to.

DETAILED DESCRIPTION OF EMBODIMENTS

[0017] The systems and methods described herein include
techniques for implementing a vehicle software deployment
management system that sends signed serialized data chunks
ol a vehicle software application and a deployment plan for
the vehicle software application to a vehicle and/or n-
vehicle application deployment planner/orchestrator of the
vehicle. The in-vehicle application deployment planner/
orchestrator 1s configured to receive both the signed seral-
1zed chunks and associated deployment plan for the vehicle
soltware application and generate a local deployment plan
for deploying components of the in-vehicle software appli-
cation.

[0018] For example, modern vehicles are equipped with
various electronic control units (ECUs), various types of
buses that may use a plurality of in-vehicle communication
protocols and that may be arranged 1n the vehicles 1n various
configurations. Additionally, along with a large amount of
variability with regard to vehicle environment configura-
tions, vehicle software applications that are requested to be
deployed 1n the vehicle may be large and complex with
multiple components that are required to be deployed 1n a
specific manner across various ones of the ECUs of the
vehicles that may be arranged 1n different configurations that
vary vehicle to vehicle. Moreover, deployment of the vehicle
soltware may be further complicated by the software com-
ponents mvolved 1n the deployment of the vehicle software
having multiple dependencies. For example, a vehicle soft-
ware application that 1s requested to be deployed may be a
distributed application that requires 1ts components to be
deployed 1n a specific sequence due to the various compo-
nents’ dependencies. Note that the dependencies may
include dependencies between software components, for
example component A must be deployed prior to component
B, as an example. Also, the dependencies may also include
solftware/hardware dependencies or networking/software
dependencies. For example, software component A may
have a dependency that requires it to be deployed on an ECU
with a direct bus connection to another ECU used to deploy
soltware component B, as an example. Also, dependencies
may include purely hardware dependencies, such as soft-
ware component A requires installation on an ECU with a
processor having X capacity, while software component B
requires installation on an ECU with a processor having Y
capacity, as an example.

[0019] As can be seen, the deployment of a vehicle
software application, including distributed applications, 1n
vehicle environments that encompass a wide range of com-
binations of vehicle hardware and software presents a non-
trivial challenge.

[0020] Also, a vehicle software deployment planner of the
vehicle software deployment management system (e.g.,
residing 1n the cloud, as an example) may coordinate the
deployment of the vehicle software application using the
deployment plan. For example, a deployment plan may
instruct specific ones of the software application component
to be deployed 1n specific ECUs based on relationship of
dependencies of each of the components. In addition to
determining the sequence of deployment, the vehicle soft-

Jun. 13, 2024

ware deployment planner may determine an optimal vehicle
application deployment configuration based on vehicle data
such as available compute resources of the ECUs, number of
CPU cores, memory, cache, storage of the ECUs etc. For
example, the deployment plan may instruct the vehicle
soltware application to be deployed to an ECU with greater
processing power available versus another ECU that 1s
viable but less optimal due to a lower available processing
power. The vehicle software deployment planner may be
able to coordinate the deployment of the vehicle software
application 1 an optimal configuration using the deploy-
ment plan. In some embodiments, a level of detail included
in the deployment plan may vary. For example, some
deployment plans may include a high-level of specificity
determined by the vehicle software deployment manage-
ment system (e.g., residing 1n the cloud), while other deploy-
ment plans may include general deployment instructions,
wherein more granular determinations are made at the
vehicle level, for example by an in-vehicle application
deployment planner/orchestrator. As an example, a more
detailed deployment plan may specily particular ECUs of a
vehicle that are to be used for deployment, whereas a more
general (e.g., less granular) deployment plan may specity
characteristics of ECUs that are to be used for particular
soltware components and the selection of particular ECUs
based on these characteristics may be left to the m-vehicle
application deployment planner/orchestrator to determine.

[0021] Moreover, 1n some embodiments, the vehicle soft-
ware application may be large such that 1ts size hinders the
transier of the vehicle application software and the deploy-
ment plan 1n a single network transmission unit, such as a
payload of a data packet. In some embodiments, the vehicle
software deployment management system may generate a
signed serialized set of data chunks for the vehicle software
application and/or deployment plan to send to the in-vehicle
application deployment planner/orchestrator to be recon-
structed incrementally. The use of the senalization and
signatures may provide a mechanism for the in-vehicle
application deployment planner/orchestrator to confirm that
all relevant chunks have been received, even 1f sent using
various different packets that may be delivered out of order,
ctc. Also, the use of the serialization may enable the 1n-
vehicle application deployment planner/orchestrator to con-
form that packets were not lost in transmission. The chunks
may be received and queued at the vehicle and assembled by
the m-vehicle application deployment planner/orchestrator.
The use of data chunks reduces the size of the individual
data packages that must be transmitted and allows greater
flexibility with regard to the types of transmission protocols
and communication networks that may be used to send the
vehicle application software.

[0022] Insome embodiments, the deployment plan may be
determined by a vehicle software deployment planner 1n a
server (e.g., cloud server), such that a server-based vehicle
soltware deployment planner dynamically receives vehicle
information and generates the deployment plan based on the
relevant vehicle information received. In embodiments
where the server-based deployment planner 1s used, the
deployment plan may contain more granular deployment
details, such as the relevant instructions/execution plans for
an 1n-vehicle deployment planner/orchestrator to orchestrate
and relay to deploy the vehicle software application accord-
ing to the deployment plan. In other embodiments, the
in-vehicle deployment planner/orchestrator may receive a

US 2024/0192940 Al

more generalized deployment plan and may generate a more
detailed deployment plan locally at the vehicle based on
vehicle information available in the vehicle. In some
embodiments, a partial deployment plan for a portion of the
vehicle software application may be generated by the in-
vehicle deployment planner/orchestrator.

[0023] FIG. 1 illustrates a vehicle software deployment
management system that sends signed serialized data chunks
of a vehicle software application and a deployment plan for
the vehicle software application to one or more vehicles
using a protocol agnostic transmission format, and/or
dynamically generates and sends, based on received streams
of vehicle data, a deployment plan for deploying the vehicle
soltware application, according to some embodiments.

[0024] A vehicle system may include a vehicle software

deployment management system 100 and network 120 that
are connected to vehicles 140, 142, 143, and 144. Although

FIG. 1 illustrates four vehicles 140, 142, 143, and 144
connected to the vehicle software deployment management
system 100 via the network 120, this 1llustration 1s intended
only as an example and it should be understood that any
number of vehicles may form a fleet of vehicles connected
to the network 120. In some embodiments, network 120 may
be connected to vehicles that contain various components
configured to send and receive signals using different
vehicle signal formats and/or that include various ECU
environments. In some embodiments the vehicles may use a
homogeneous vehicle signal format and/or a homogenous
set of ECUs. Customers 122a through 1227 may further-
more, be connected to vehicle software deployment man-
agement system via the network 120. Customers 122a
through 1227 may be vehicle suppliers or vehicle compo-
nent suppliers (e.g., vehicle original equipment manufactur-
ers (OEMs) and/or parts suppliers). Network 120 may be a
private or public network such as a direct connect connec-
tion to a service provider network hosting the vehicle
soltware deployment management system 100, or an Inter-
net connection. Network 120 may furthermore be a wireless
network, such as a cellular network, Wi-F1 network or other
wireless network. In some embodiments the vehicles 140,
142, 143, and 144 may be connected to multiple types of
networks 120 and not just to one type of network 120.

[0025] In some embodiments, the vehicle software
deployment management system 100 may include a deploy-
ment plan generator 104, a fleet management system 102, a
vehicle application storage 106, a vehicle application mar-
ketplace 108, a vehicle data ML inference module 110, and
a vehicle application transmission module 112. The deploy-
ment plan generator 104 may generate a deployment plan
130 for a single vehicle, such as the vehicle 142, or a fleet
of vehicles 140, 142, 144, and 146 based on the vehicle
application deployment requests 124a-124»n. With regard to
a vehicle software application that 1s to be deployed, the
deployment plan generator 104 may obtain the vehicle
soltware application that 1s to be deployed from a vehicle
application storage 106, external application storage 206
(shown 1n FIG. 2), and/or directly from the customer 122. In
some embodiments, the vehicle software application to be
deployed may be provided using Open Container Imitiative
(OCI) images that are compatible with ECUs 1n a vehicle 1n
which the vehicle software application 1s to be deployed. In
some embodiments, the vehicle application marketplace 108
may expose various vehicle applications allowed to be
deployed to a given vehicle for the customers 122q-122#n.

Jun. 13, 2024

The customers 122a-1227 may indicate 1n a vehicle appli-
cation deployment request a particular application to deploy
to the vehicle. Although not illustrated, 1n some embodi-
ments, a control plane of the vehicle software deployment
management system 100 allows customers 122a, 1227 to
perform various actions required to deploy one or more
vehicle software application as well as update the deploy-
ment plans. A control plane of the vehicle software deploy-
ment management system 100 may register vehicles, model
vehicles (e.g., manage vehicle shadows), and manage data
across a single vehicle or a fleet of vehicles. The deployment
plan generator 104, vehicle application storage 106, and the
vehicle application marketplace 108 will be further dis-

cussed in FIG. 2 and FIG. 5.

[0026] In some embodiments, the deployment plan gen-
crator 104 may generate a deployment plan for a vehicle
soltware application to be implemented using software
included in containers having an Open Container Imitiative
(OCI) image format. The deployment plan generator 104
may generate a deployment plan 130 that may be processed
by an 1n-vehicle application deployment planner/orchestra-
tor 150 of the vehicle 142 to deploy the particular vehicle
software application. In some embodiments, the in-vehicle
application deployment planner/orchestrator 150 may
include one or more subsystems that processes deployment
plans sent from the vehicle software deployment manage-
ment system 100, and may create localized ECU execution
plans based on metadata that are obtained from the ECUs in
the vehicle through one or more ECU agents deployed at the
ECUs. In some embodiments, the deployment plan 130 sent
to the vehicle may create one or more localized ECU
execution plans that are then transmitted by an in-vehicle
application deployment planner/orchestrator 150 to respec-
tive ECUs. In some embodiments, the execution plans may
be transmitted according to a specific sequence to the
respective ECUs. The in-vehicle application deployment

planner/orchestrator 150 and local execution plans will be
further discussed in FIG. 3.

[0027] In some embodiments, the wvehicle application
transmission module 112 may ingest one or more vehicle
data streams 132 from the vehicles 140, 142, 144, and 146;
decode the 1ingested one or more vehicle data streams; and
transmit a deployment plan and/or vehicle applications to
the respective vehicles. As further discussed herein, 1n some
embodiments, the deployment plan may be adjusted based
on the mformation provided in the one or more vehicle data
streams 132. The vehicle application transmission module
112 may furthermore provide a vehicle side software devel-
opment kit (SDK) or other collection of software develop-
ment package to iterpret deployment plans (or other mes-
sages) and interpret the wvehicle software application
(1including OCI 1images of the application and dependencies)
to a vehicle. The vehicle application transmission module
112 may furthermore 1nclude a first-in-first-out (FIFO) type
queue storing signed serialized data chunks that have been
generated based on an aggregated deployment plan. The
signed serialized data chunks may be formatted in a way and
the vehicle application transmission module may be config-
ured to transmit the signed serialized data chunks such that
the signed serialized data chunks can be relayed using any
communication protocol/mechanism a customer prefers.
The vehicle application transmission module 112 may gen-
erate a set of signed serialized data chunks of only the
vehicle application, only the deployment plan, or both the

US 2024/0192940 Al

deployment plan and the vehicle application. In some
embodiments, the customer 122q¢-122z may indicate the
desired size of the data chunks for transmission to the
vehicles 140, 142, 144, and 146. For example, the chunked
transmission of a vehicle application and a deployment plan
170 may be determined according to the respective vehicle
application deployment requests 124a-124n of the respec-
tive customers 122aq-122xn. In some embodiments, the
chunks may be signed so as to enable verification by the
in-vehicle application deployment planner/orchestrator 150
that the received data chunks are sent by a correct entity. In
some embodiments, a third-party application may utilize a
cloud-side SDK to interact with the vehicle software deploy-
ment management system 100 and transmit the signed
serialized data chunks to any of the connected vehicles.
Furthermore, 1n some embodiments, the vehicle software
deployment management system 100 may communicate
with the vehicles using one or more protocols including a
Message Queuing Telemetry Transport (MQTT) protocol, a
Constrained Application Protocol (CoAP), an Extensible
Messaging and Presence Protocol (XMPP), an Advanced
Message Queuing Protocol (AMQP), and/or a Data Distri-
bution Service (DDS).

[0028] In some embodiments, in-vehicle application
deployment planner/orchestrator 150 may implement a gate-
way for vehicle 142 to receive the chunked transmission of
the vehicle application and the deployment plan 170.
Although not 1llustrated 1n detail, the in-vehicle application
deployment planner/orchestrator 150 may be implemented
in an ECU or other computing unit of the vehicle 142. The
in-vehicle application deployment planner/orchestrator 150
may provide an in-vehicle receive module (such as the
in-vehicle recerve module 314 discussed in FIG. 3). Also,
the in-vehicle deployment planner 150 may allow the
vehicle to process the signed serialized data chunks trans-
mitted through the communication protocol/mechanism uti-
lized to transmit the signed serialized data chunks 1n a
protocol agnostic manner. The in-vehicle application
deployment planner/orchestrator 150 may incrementally
reconstruct the deployment plan and application packages/
container 1images to be used to implement the in-vehicle
application based on the chunked data sent to the vehicle.
Once the chunked transmission of the deployment plan and
the vehicle application are received, in-vehicle application
deployment planner/orchestrator 150 may incrementally
reconstruct the deployment plan and the application pack-
ages/container 1mages using the received chunks. In some
embodiments, the data chunks may be verified and routed to
a package manager for application reconstruction (including
OCI 1mage reconstruction) and/or an ECU task delegator for
the plan execution (as discussed in FIG. 3-4). In some
embodiments, the deployment plans may not be processed
for execution until the prerequisite OCI 1mages are fully
reconstructed 1n the local repository. In some embodiments,
the 1n-vehicle application deployment planner/orchestrator
150 may use a multi-protocol communication broker to
interact with ECU agents in one or more ECUs of the
vehicle.

[0029] In some embodiments, a vehicle communications
bus 158 of the vehicle 142 may transmait vehicle information
sent from various components of a vehicle, such as elec-
tronic control unit 152 (ECU #1), electronic control unit 154
(ECU #2), and electronic control unit 156 (ECU #3). Addi-

tionally, other components, such as physical sensor #1 160,

Jun. 13, 2024

physical sensor #2 162, and physical sensor #3 163 may be
connected to one or more of the vehicle communications
buses 158 and/or ECUs of the vehicle. In some embodiments
the various physical sensors may include audio/visual sen-
sors that obtain audio/visual information and may commu-
nicate such information over the vehicle communications
bus 138. In some embodiments, the various physical sensors
160, 162, and 164 may include a location sensor that 1s able
to obtain the location of the vehicle. In some embodiments
the location sensor may be a Global Positioning System
(GPS) using cellular, wireless passive, satellite, and other
types of GPS systems. The location sensor may obtain
location information that i1s further processed by the 1in-
vehicle application deployment planner/orchestrator 1350
before being transmitted over the network to the vehicle
soltware deployment management system 100. In some
embodiments, the various physical sensors may be con-
nected to multiple vehicle communications buses and/or
physical sensors. For example, in the vehicle 142, physical
sensor 162 (physical sensor #2) may be connected to ECU
154 (ECU #2) as well as ECU 156 (ECU #3) via the vehicle
communications bus 158. Various vehicle communications
bus 158 connections may provide alternate sensor signal
paths. As will be further discussed in FIG. 3 various portions
of the vehicle communication buses 158 may be different
types of buses and/or buses that use different types in-
vehicle communication protocols. The in-vehicle commu-
nications protocols used in the vehicle 142 may include a
controller area network (CAN) protocol, a remote procedure
call (RPC) protocol, a controller area network flexible
data-rate (CAN FD) protocol, a low-speed CAN protocol, a
high-speed CAN protocol, a Society of Automotive Engi-
neers (SAE) 11939 protocol, a CANopen protocol, and/or an
on-board diagnostics (OBD) protocol.

[0030] The various vehicles 140, 142, 144, and 146 may
generate vehicle data stream 132 containing various pieces
or types of vehicle information that are sent to the vehicle
solftware deployment management system 100. The in-
vehicle application deployment planner/orchestrator 150
may send various diagnostic data for the vehicle 142,
including information generated by the physical sensor #1
(160), physical sensor #2 (162), and physical sensor #3
(164), and/or an ECU configuration of the vehicle 142
including an ECU #1 (154), ECU #2 (156), and/or ECU #3
(158) configuration. The vehicle application transmission
module 112 may directly ingest vehicle data stream 132 and
decode the information. For example, in some embodiments,
the extracted vehicle data may include compressed data such
as video frames, 1images, radar amplitude, temperature data,
engine speed, driver’s performance, and/or other informa-
tion about the vehicle that may be decoded into usable
vehicle data that may be used by the vehicle software
deployment management system 100. In some embodi-
ments, the vehicle data may be enriched with other vehicle
information. The vehicle software deployment management
system 100 may utilize the recerved vehicle information to
dynamically generate one or more updated vehicle deploy-
ment plans 130 to send to respective vehicles.

[0031] The deployment plan generator 104 of the vehicle
soltware deployment management system 100 may dynami-
cally generate deployment plans that allow for ongoing
optimization of deployment configurations for soltware
applications within the respective vehicles. For example, the
vehicle 142 may utilize an 1n-vehicle application deploy-

US 2024/0192940 Al

ment planner/orchestrator 150 to carry out newly optimized
deployment plans to manage the application lifecycle and
deployment destinations for containers used to implement
one or more in-vehicle applications, including various ECUs
of the vehicle 142 used to execute code included 1n the
containers as further discussed i FIGS. 5-6. In some
embodiments, the vehicle application deployment planner
150 may source an optimal deployment configuration from
the vehicle software deployment management system 100
on an on-going basis and redeploy and/or re-allocate appli-
cations based on the dynamically updated deployment plans.
One or more customers may determine and/or specily an
application to deploy as well as a vehicle configuration to be
used to optimize deployment of the application for using the
fleet management 102 or the vehicle application marketplace
108. The deployment plan generator 104 may use a vehicle
ECU configuration and diagnostic data, as well as an ML
inference generated from vehicle data and other sources to
determine an optimized configuration for deployment of an
application on the vehicle as further discussed in FIG. 8. In
some embodiments when the vehicle software deployment
management system 100 1s not able to be connected to the
vehicle (e.g., situations where no internet connectivity 1s
available for the vehicle), a localized execution plan may be
utilized which prioritizes the availability of safety critical
applications over non-safety critical applications.

[0032] In some embodiments, the fleet management 102
can utilize the vehicle data 132 to reconstruct a representa-
tion or state of the vehicle 1n a vehicle simulator, such as a
virtual replica of a vehicle. The reconstructed representation
may be used to test various vehicle soltware applications
including testing the deployment of the vehicle software
application as further discussed in FIG. 5. Moreover, 1n-
vehicle application deployment planner/orchestrator 1350
may use a deployment adapter interface to communicate
with the different runtime environments that can be
deployed 1n vehicle ECU partitions such as Autosar Classic,
Autosar Adaptive, Android, OCI container frameworks,
and/or WASM runtimes as further discussed i FIGS.
6A-6B.

[0033] Please note that the previous description of the
vehicle software deployment management system and the
in-vehicle application deployment planner/orchestrator 1s a
logical description and thus 1s not to be construed as limiting
as to the particular implementation or portions thereof. This
specification continues with various examples of the vehicle
software deployment management system and in-vehicle
application deployment planner/orchestrator, including dii-
ferent components/modules, or arrangements of compo-
nents/module that may be employed as part of implementing
the system/planner. A number of different methods and
techniques to 1mplement protocol agnostic transmission of
signed serialized transmission application packages/images
and deployment plans are discussed, some of which are
illustrated 1n accompanying tflowcharts. A number of difler-
ent methods and techniques to implement dynamic genera-
tion of deployment plans are also discussed, some of which
are similarly 1llustrated in accompanying tlowcharts.
Finally, a description of an example computing system upon
which the various components, modules, systems, devices,
and/or nodes may be implemented i1s provided. Various
examples are provided throughout the specification.

[0034] FIG. 2 1llustrates a more detailed view of a vehicle
software deployment management system, 1ts various parts,

Jun. 13, 2024

and interactions to generate signed serialized data chunks of
the vehicle application and/or deployment plan and sending
the signed serialized data chunks to a vehicle using a
protocol agnostic transmission format, according to some
embodiments.

[0035] In FIG. 2, the vehicle software deployment man-
agement system 100 may receive a request to deploy vehicle
application 200. In some embodiments, the request to deploy
vehicle application 200 may be the vehicle application
deployment request 124a from a customer 122a as 1llus-
trated 1n FIG. 1 or may be a request to deploy from another
client. The request to deploy the vehicle application may
indicate to the vehicle software deployment management
system 100 a vehicle software application to be deployed to
the vehicle 142. In some embodiments, instead of the
request to deploy vehicle application 200, the vehicle soft-
ware deployment management system 100 may receive a
vehicle application 202 itself from the client/customer in
addition to, or istead of, the indication of the wvehicle
soltware application to deploy. In some embodiments, the
vehicle application 202 may include code included 1n one or
more containers formatted in a OCI image format, to be
deployed using a containerized computing environment. For
example, the in-vehicle application deployment planner/
orchestrator 150 may enable operating system (OS)-level
virtualization or an OS paradigm in which a kernel allows
the existence of multiple 1solated software instances, called
containers. The containerized environment may support

various 1nterpreted or compiled programming languages
such as Ruby, Perl, Python, C, C++ and the like.

[0036] In some embodiments, the vehicle application 204
may be a custom vehicle application sent to the vehicle
soltware deployment management system 100 together with
a request to deploy the vehicle application 200. The vehicle
application 204 may be added to the vehicle application
storage 106 and/or an external vehicle application storage
106. The vehicle application storage 106 may be various
kinds of object or file data stores for putting, updating, and
getting data objects or files, including application packages,
such as container images. For example, vehicle application
storage 106 may be an object-based data store that allows for
different data objects of different formats or types of data,
such as vehicle software application files having an OCI
format. In some embodiments, the application recerved may
be a set of one or more custom application packages/
container images that are not found in the vehicle applica-
tion storage 206. The data objects 1n the vehicle application
storage 206 may further include related dependent software
packages (dependencies) including dependent OCI images.
In some embodiments, the control plane of the vehicle
soltware deployment management system 100 may be
accessed via programmatic interfaces (e.g., APIs) or graphi-
cal user interfaces to manage the applications stored 1n the
vehicle application storage 106.

[0037] Once the vehicle software deployment manage-
ment system 100 receives a request to deploy vehicle
application 200, where the application 1s identified in the
request 200 (or included in the request 200), the deployment
plan generator 104 may generate a deployment plan for
deploying the application on the vehicle 208 and that may be
used by the in-vehicle application deployment planner/
orchestrator 150 to deploy the identified vehicle application
as discussed 1in FIG. 1. In some embodiments, the vehicle
application transmission module 112 may retrieve the

US 2024/0192940 Al

vehicle application packages/container images based on
indications included in deployment plan 210. In some
embodiments, the vehicle application transmission module
112 may retrieve a catalog of the vehicle applications stored
in the vehicle application storage 106 and retrieve the
vehicle application according to the application as described
in the catalog and various dependencies further identified 1n
the catalog. In some embodiments, the vehicle application
transmission module 112 may retrieve one or more portions
of the vehicle application from the external vehicle appli-
cation storage 214. Similar to retrieving the applications
stored 1n the vehicle application storage 106, the vehicle
application transmission module 112 may retrieve the
vehicle application according to how the application com-
ponents are described 1n an external vehicle application
storage 206 catalog and various dependencies further iden-
tified 1n the external catalog (e.g., stored in external storage
206). In some embodiments, the vehicle application 204
may be directly provided to the vehicle application trans-

mission module 112 from the deployment plan generator
104.

[0038] Once the vehicle application transmission module
112 obtains all of the vehicle application components/
images, the vehicle application transmission module 112
may generate data chunks of the vehicle application and/or
the deployment plan. The data chunks reduce the size of the
individual data packages that must be transmitted and allow
greater flexibility 1n the types of transmission protocols and
communication networks that may be used. As discussed 1n
FIG. 1, the data chunks may be signed and/or serialized and
may be received by the in-vehicle application deployment
planner/orchestrator 150 to deploy the application in the
vehicle 142. In some embodiments, a specific signature
associated with the signed chunks may be recognized by the
in-vehicle application deployment planner/orchestrater 150
to verily that the signed chunks are from a correct entity
and/or that the signed chunks have been received by a
correct vehicle. In some embodiments, the data chunks may
be encrypted such that the data chunks are able to be used
at a vehicle having access to a correct encryption key but
otherwise unusable by non-authorized entities. For example,
the n-vehicle application deployment planner/orchestrater
150 may have access to a private key 1n a secure store such
that the vehicle 142 1s able to decrypt the encrypted data
chunks, whereas other vehicles that are not specifically
targeted may be unable to decrypt the data chunks. In some
embodiments, the vehicle application transmission module
may store the data chunks in a chunked vehicle package
transmission queue 212 and send the chunked vehicle appli-
cation and deployment plan using one or more of the various
transmission protocols described 1n FIG. 1. In some embodi-
ments, the vehicle application transmission module 112 may
send the chunked vehicle application and deployment plan
to the vehicle via an external data transmission service (such
as a third-party over-the-air (OTA) service). In some
embodiments, additional signing/encryption may be used by
the external service used to transmit the data chunks. In
some embodiments, a separate MQT'T service 220 may be
used by the vehicle application transmission module to
transmit the chunked data. One or more of the data chunks
may be sent using a protocol agnostic transmission format
that 1s compatible with a plurality of diflerent transmission
protocols used for communications between the vehicle
software deployment management system 100 and the

Jun. 13, 2024

vehicle 142. In some embodiments, the protocol agnostic
transmission format may be a format that 1s compatible with
vartous external data transmission service/OTA services
utilizing plurality of different transmission protocols.

[0039] FIG. 3 illustrates a graphical view of an example
in-vehicle application deployment planner/orchestrator of a
vehicle that receives a deployment from a vehicle software
deployment management system and/or receives signed
serialized data chunks of a vehicle application to be
deployed at the vehicle, wherein the m-vehicle application
deployment planner/orchestrator enables deployment of the
in-vehicle application 1n a execution environment the
vehicle, according to some embodiments.

[0040] In some embodiments, the in-vehicle application
deployment planner/orchestrator 150 may include an 1n-
vehicle receive module 312, in-vehicle transmit module 314,
a package manager 322, an ECU task delegator 324, and a
multi-protocol communication module 326. As discussed in
FIG. 1, the vehicle communications buses 158 may include
different types of buses and/or buses that use diflerent types
of m-vehicle communication protocols. For example, a first
portion of the vehicle communication bus 158a may be a
FlexRay bus, a second portion of the vehicle communication
bus 15856 may be an Ethernet/IP bus, and a third portion of
the vehicle 142 vehicle communication bus 158a may be a
CAN bus. In some embodiments, there may be multiple
CAN buses (e.g., a CAN bus #1 and a CAN bus #2, etc.)
and/or a local interconnect (LIN) bus. The vehicle commu-
nication buses may utilize the various in-vehicle communi-
cations protocols discussed 1n FIG. 1. For example, the CAN
bus 158¢ may utilize a high-speed CAN protocol.

[0041] As 1illustrated 1in FIG. 3, the in-vehicle receive
module 312 may receive the protocol agnostic chunked
transmission 216 of the vehicle software application and the
corresponding deployment plan generated by the vehicle
software deployment management system 100. The in-
vehicle recetve module 312 may mterface with the various
networks that have network connections to the vehicle and
receive the chunked transmission from any one or more of
the various networks according to various communication
protocols. The 1n-vehicle recetve module 312 may send a
received deployment plan 330 to the ECU task delegator 324
and send application data 332 to the packager manager. The
application data 332 may be organized into chunks of the
application and/or chunks of one or more application pack-
ages/container 1mages received. The package manager 322
reconstructs the application components (such as container
images) using the received application data 332 in order to
deploy the application 1n the vehicle 142. In some embodi-
ments, the ECU task delegator 324 may monitor the package
manager 340 1n order to verily the prerequisite application
components, such as OCI i1mages, are fully reconstructed
before processing the deployment plans and sending one or
more deployment instructions 344 to the multi-protocol
communication module 326. The one or more deployment
instructions 344 may be one or more execution plans for
implementing the vehicle software application at the vehicle
based on the received deployment plan.

[0042] In some embodiments, an execution plan may
include specific 1nstructions regarding relevant ECUs that
are to be used to deploy the application (or a speciiic
component of an application 1n a case for distributed vehicle
software application that 1s not configured using containers)
on the relevant ECUs. The ECU task delegator may generate

US 2024/0192940 Al

individual localized execution plans to deploy the applica-
tion (or the specific component of the application) for each
of the ECUs. For example, the ECU task delegator may
instruct the multi-protocol communication module 326 to
get a relevant package/image 342 from the package manager
322 to deploy on ECU #1 (152) according to the deployment
plan, and send the package/image to ECU #1 (152) along
with ECU deployment 1nstruction 350. The localized ECU
execution plans may be transmitted to the appropriate ECUS,
for example instead of being transmitted to all ECUs of the
vehicle.

[0043] In some embodiments, the multi-protocol commu-
nication module 326 may enable translation of various
vehicle communication bus 158 protocols to facilitate trans-
fer of information within the vehicle. For example, the
multi-protocol commumication module 326 may send the
ECU deployment instructions 350 along with a given image
to be deployed to ECU #1 over the CAN bus 158¢ utilizing
the high-speed CAN protocol. Once sent, a multi-protocol
communication module 374 of the ECU agent 370 may
receive the localized ECU deployment instructions 330
using the high-speed CAN protocol and allow the deploy-
ment plan executor of the ECU agent 370 to deploy the
localized ECU deployment instructions.

[0044] In some embodiments, the ECU agent 370 may
interact with the underlying components of the ECU #1
provided by a real-time operating system (RTOS) vendor or
other a third-party ECU vendor to manage the lifecycle of
the vehicle application. Furthermore, 1n some embodiments,

the ECU agent 370 may provision various Container Net-
work Interfaces (CNI) plugins 372 that extend capabilities of
the ECU #1, such as enabling GPU sharing extensions,

shared memory extensions, Zero-copy 1nter process commu-
nication (IPC) extensions, etc. for the ECU #1. The multi-
protocol communication module 326 may inform the ECU
task delegator with a status 346 sent from the ECU agent 370
as to the status of the ECU (including the deployment status
of the application). The ECU task delegator 324 may send a
status message 338 to be sent from the vehicle 142 to one or
more recipients. A protocol agnostic transmission 360 that
contains the vehicle status may be sent by the in-vehicle
transmit module 314 to the vehicle software deployment
management system 100 or other recipients. The in-vehicle
transmit module 314 may be similar to the in-vehicle receive
module 312 in supporting various transmission protocols
described i FIG. 1. In some embodiments, the separate
MQTT service 220 may be used by the vehicle application
transmission module to transmit the chunked data as dis-
cussed 1n FIG. 2. In some embodiments, the transmission
360 may be divided into data chunks by the in-vehicle
transmit module 314 and sent using a protocol agnostic
transmission format that 1s compatible with a plurality of
different transmission protocols used for communications
between the vehicle 142 and the vehicle software deploy-
ment management system 100. Although FIG. 3 illustrates
the 1n-vehicle application deployment planner/orchestrator
150 imteracting with only ECU #1 152, this 1s by way of
example, and the 1m-vehicle application deployment planner/
orchestrator 150 may be connected various other ones of the
ECUs, sensors, and other vehicle components and may send
respective ECU deployment instructions.

[0045] FIG. 4 illustrates a more detailled view of an
in-vehicle application deployment planner/orchestrator for a

Jun. 13, 2024

vehicle and use of conditional rules of a deployment plan to
deploy a vehicle software application, according to some
embodiments.

[0046] In some embodiments, the localized ECU execu-
tion plans that were discussed 1n FIG. 3 may be generated
based on ECU environment metadata obtained from the
ECU agents deployed on the various ECUs. For example,
the 1n-vehicle application deployment planner/orchestrator
150 may receive a deployment plan 400 from the vehicle
soltware deployment management system 100. Subsequent
to generation of the localized execution plan to deploy the
application to ECU #1 (152) as discussed in FIG. 3, the
application may fail to deploy. In some embodiments, a
metadata generated by the ECU #1 (152) indicating a
deployment failure 404 may be communicated to the 1in-
vehicle application deployment planner/orchestrator 150.
Based on the metadata received, the ECU task delegator 324
may generate another localized execution plan to deploy the
application 1n a contingent deployment location A (410a) 1n
ECU #2 154. In some embodiments, the ECU task delegator
324 may incorporate various other metadata in addition to an
indication of failure to deploy an application, such as
metadata indicating an ECU processing environment,
including a capacity of compute resources of the ECU, types
of contaimners the ECU supports, configurations of other
applications deployed to the ECU, such as other containers
implemented on the ECU, a number of CPU cores, memory,
cache, storage, etc. of the ECU as well as any other
performance characteristic of the ECU. For example, the
ECU task delegator 324 may determine that instead of
contingent deployment location A 410q, that the application
1s to be deployed to contingent deployment location B
(4100) 1n ECU #3 156 upon determination that ECU #2
(154) would not provide a suitable processing environment
when compared with ECU #3 (156). In some embodiments,
other vehicle metadata may be used to determine the local-
1zed execution plan including sensor data and vehicle com-
munications bus 158 metadata. For example, the ECU task
delegator 324 may attempt to redeploy the application to
ECU #1 (152) subsequent to receiving metadata regarding a

disconnected communications bus 412 connecting ECU #3
156 to the ECU task delegator 324.

[0047] Insome embodiments, the ECU task delegator 324
may determine the localized execution plans based on
conditional rules 402 provided 1n the deployment plan 400.
For example, a conditional rule may state a pre-determined
ECU as a contingent deployment location to be used for a
given one of the container images (in 1nstances wherein OCI
container 1mages are used) in response to a failure of
deployment of that given container image. In some embodi-
ments, the conditional rule may indicate a contingent
deployment location for a given container image in response
to a successiul deployment of another one of the container
images 1n the ECU of the plurality of ECUs. For example,
upon a successiul deployment of application to ECU #1,
another application may be configured to be deployed to
ECU #2. In some embodiments, the conditional rule may
indicate selecting a deployment location for a given con-
tamner i1mage based on respective states, characteristics,
and/or configurations of the ECUs of the vehicle. Various
other conditional rules may determine how one or more
application may be deployed.

[0048] FIG. 5 1llustrates a more detailed view of a vehicle
soltware deployment management system, 1ts various parts,

US 2024/0192940 Al

and interactions to dynamically generate and send, based on
streams ol vehicle data, deployment plans for deploying a
vehicle software application, according to some embodi-
ments.

[0049] In some embodiments, a vehicle software deploy-
ment management system 100 may receive a request to
deploy one or more vehicle applications 200. In some
embodiments, the request 200 may be received by the fleet
management 102 that tracks and manages one or more
vehicles of a fleet of vehicles that the given application may
be deployed to. The request may indicate the vehicle(s) to
deploy the one or more application to, including a virtual
vehicle generated by a vehicle simulator 510 of the vehicle
software deployment management system 100 or vehicles to
be used as test environments. For example, the fleet man-
agement 102 of the vehicle software deployment manage-
ment system 100 may test deployment of the application on
a fleet of vehicles 521 that are specifically marked as test
environments by sending a deployment plan and vehicle
application to the test fleet. For example, based on the
request 200, the fleet management may request the deploy-
ment plan generator 104 to generate one or more deploy-
ment plans for the selected vehicles. Thus, as illustrated in
FIG. §, the deployment plan generator 104 may transmait the
deployment plan and vehicle application 506 to the vehicle
142. In some embodiments, the deployment plan and/or the
vehicle application may be transmitted as signed serialized

data chunks as discussed in FIG. 2.

[0050] The vehicle 142, 1n some embodiments, may gen-
erate and send ECU configuration and vehicle diagnostic
data streams to the deployment plan generator 104. The
deployment plan generator 104 may determine that a more
optimal vehicle application configuration 1s available, and
may dynamically generate, based on streams of vehicle data,
deployment plans for deploying a vehicle software applica-
tion, according to some embodiments. The data stream 508
may include the vehicle data as discussed 1n FIG. 4 and ECU
status discussed in FIG. 3. The deployment plan generator
104 may determine that a threshold level of improvement 1n
application reliability, processing efliciency, processing
speed, and/or another optimization criteria of the vehicle
142 1s available. Subsequent to determination that a thresh-
old level of improvement of the vehicle 142 1s met, the
deployment plan generator 104 may generate and send an
updated deployment plan and vehicle application based on
the vehicle data stream 3514. For example, the deployment
plan generator 104 may determine that based on a vehicle
diagnostic data that a portion of the vehicle communications
bus 1s not available and send an updated deployment plan
that re-deploys the vehicle application to another ECU. In
some embodiments, prior to sending the updated deploy-
ment plan and vehicle application, the deployment plan
generator 104 may request certification of the deployment
plan 513. For example, the deployment plan generator 104
may send a request that includes the deployment plan,
vehicle application, application dependencies, vehicle meta-
data, and/or application test results to a certification desti-
nation, and the certification destination may initiate its own
separate 1nternal certification workilow to determine
whether the deployment plan should be certified and allowed
to be deployed. In some embodiments, the certification
destination may reject the deployment plan and request the
deployment plan generator 104 to generate another deploy-

Jun. 13, 2024

ment plan having a different application deployment
sequence or configuration, such that certification can be met.

[0051] In some embodiments, the deployment plan gen-
erator 104 may perform dependency tracking/verification 1n
order to determine whether the deployment plan 1s certified
to be deployed to the vehicle. For example, vehicle appli-
cations may be deployed as groups where there exists certain
interdependencies between the applications (and/or compo-
nents of the applications) in the group. The deployment plan
generator 104 may generate one or more dependency graphs
that track changes made to the applications deployed 1n the
vehicle. The dependency graph may track the effects of
various changes to the dependencies as the applications are
replaced, upgraded, or removed over time. The deployment
plan generator 104 may also track and/or ensure that such
changes do not violate conditions upon which certification
relied for already installed vehicle software applications.
Also, prior to deployment of a new vehicle software appli-
cation, the deployment plan generator 104 may use the
dependency graph to verily that the deployment based on the
deployment plan will not negatively aflect the listed depen-
dencies or otherwise violate a condition upon which certi-
fication relies. In this way, deployment of the application
may be cleared with regard to certification based on a
determination that the deployment will not break any of the
listed dependencies from the dependency graph. A certifi-
cation process that mvolves dependency tracking/verifica-
tion may prevent potential breakage of various dependencies
and prevent application deployment failure before 1t occurs
in the vehicle.

[0052] In some embodiments, the application may be
obtained from the vehicle application storage 106 and/or
external vehicle application storage 206 as discussed 1n FIG.
2. In some embodiments, the request to deploy vehicle
application 200 may be indicated to the vehicle application
marketplace 108. The request to deploy 200 may be based on
a catalog of applications that are marked available for a
particular vehicle model or a particular vehicle configura-
tion. For example, the vehicle application marketplace 108
may indicate to a client or a customer of the vehicle software
deployment management system 100 a list of applications
that are available to be deployed. In some embodiments,
subsequent to selection of an application from the list of
applications, the vehicle application marketplace may obtain
teasible deployment options 520 from the deployment plan
generator. For example, the deployment plan generator 104
may obtain various deployment options that meet various
ones of optimization criteria (e.g., application reliability,
processing efliciency, and processing speed). The vehicle
application marketplace 108 may request selection of fea-
sible deployment option 522 to the client and/or customers.
In some embodiments, the request to select feasible deploy-
ment option 522 may be sent to the client that sent the
request to deploy the vehicle application 200 to the vehicle
solftware deployment management system 100. In some
embodiments, the deployment plan generator 104 may
determine that no feasible vehicle software applications are
able to be deployed in the vehicle. In some embodiments, the
teasible deployment plan option may include the one or
more feasible deployment options that includes an option to
change one or more of: an arrangement of vehicle software
deployed 1n the vehicle, a collection of vehicle software
deployed 1n the vehicle, and/or a specification of a vehicle
hardware component.

US 2024/0192940 Al

[0053] Insome embodiments, a vehicle simulator 510 may
create a vehicle replica 512 based on the vehicle 142
information obtained by the deployment plan generator 104.
The vehicle simulator 510 and the vehicle replica generated
may be used to test deployment of vehicle application 520.
In some embodiments, the testing ol deployment of the
application using a deployment plan may be based on the
initial request to deploy vehicle application 200. Although
FIG. 5 illustrates one updated deployment plan sent to the
vehicle 142, there may be any number of dynamic updates
to the deployment plan sent to the vehicle 142 based on the
ECU configuration and vehicle diagnostic data streams
obtained.

[0054] FIG. 6A 1llustrates a more detailed view of an
in-vehicle application deployment planner/orchestrator of a
vehicle that uses deployment plan received from a vehicle
soltware deployment management system to deploy a
vehicle application, wherein the in-vehicle application
deployment planner/orchestrator also sends a stream of ECU
configuration and vehicle diagnostic data from ECUs of the
vehicle back to the vehicle software deployment manage-
ment system for use in dynamically updating the deploy-
ment plan for the vehicle, according to some embodiments.
In some embodiments, a deployment plan for an application,
such as application D 602 may be recerved by a vehicle data
receive module 604 that receives the deployment plan and
the required application packages. In some embodiments,
the application received may be application images 1 OCI
image format and the vehicle data receive module 604 may
be an over-the-air (OTA) agent that receives the deployment
plan for application D wirelessly. In some embodiments, the
vehicle data receive module 604 may be similar to the
in-vehicle receive module 312 as discussed in FIG. 3.

[0055] Subsequent to receiving the deployment plan for
application D, the ECU task delegator may obtain the
deployment plan to generate and/or relay localized execu-
tion plans 603. In some embodiments, the deployment plan
may contain all of the relevant localized nstructions and/or
execution plans for the in-vehicle deployment planner/or-
chestrator 150 to relay to relevant vehicle components (such
as ECUs) 1n order to deploy the vehicle software application.
In some embodiments, the relaying of the localized execu-
tion plans may not be restricted to unmodified transmission
of the localized execution plans generated by the deploy-
ment plan generator 104, but may also include making
modifications to the localized execution plans including
reassembling, decompressing, reformatting of the localized
execution plans, etc. In some embodiments, the mn-vehicle
deployment planner/orchestrator 150 may receive a partial
deployment plan containing localized execution plans for a
portion of the vehicle software application and localized
execution plans for a remaining portion of the vehicle
soltware application may be generated by the in-vehicle
deployment planner/orchestrator 150 as discussed 1n FIGS.

3-5. The mult1 multi-protocol communication module 326
may deploy application D 608 to the ECU #1 (152) such that

ECU #1 (152) has vehicle application A 620a and vehicle
application D 6204 deployed. The deployment may occur
via one or more vehicle communication buses using one or
more communication protocols as discussed in FIG. 3. The
vartous ECUs may furthermore contain various vehicle

applications currently deployed, such as vehicle application
B 6200 1n ECU #2 (154) and vehicle application C 620c¢ 1n

ECU #3 (156). Upon successiul deployment of vehicle

Jun. 13, 2024

application D 6204, ECU #1 may send an ECU configura-
tion from deployment of application D 610 to the vehicle
data transmission module 612. In some embodiments, the
vehicle data transmission module 612 may be similar to the
in-vehicle transmit module 314 as discussed 1n FIG. 3 and/or
may be a transmission module able to communicate with the
vehicle software deployment management system 100 via a
plurality of communication protocols as discussed in FIG. 2.

[0056] In addition to the ECU configuration from deploy-
ment of application D 610, in some embodiments, the
vehicle data transmission module 612 may receive ECU
configuration and vehicle diagnostic data from ECU #2 and
ECU #3 612 and may send the data to vehicle software

deployment management system 100 as data stream 308. As
discussed 1n FIG. 5, based on the data stream 508 and
subsequent to determination that a threshold optimization of
the vehicle 142 1s met, an updated deployment plan may be
generated and sent to the vehicle that may further result 1n
a redeployment of application D.

[0057] FIG. 6B illustrates a more detailed view of an
in-vehicle application deployment planner/orchestrator of a
vehicle that redeploys vehicle applications 1n various ECUs
based on an updated deployment plan from the vehicle
soltware deployment management system, according to
some embodiments. In some embodiments, the vehicle data
receive module 604 may recerve an updated deployment
plan 630. The vehicle software deployment management
system 100 may receive the data stream 508 and dynami-
cally generate the updated deployment plan 630. The ECU
task delegator 324 may obtain the updated deployment plan
to generate and/or relay localized execution plans 631.

[0058] In some embodiments, the localized execution
plans may include one or more operations to remove appli-
cation D 632 from ECU #1. The localized execution plan
may furthermore include plans to redeploy not only appli-
cation D 620 to ECU #2 as illustrated, but may include
multiple respective localized execution plans for the respec-
tive ECUs to redistribute vehicle application A, B, C, and D
634. For example, the updated deployment plan may rede-
ploy previously deployed vehicle application B from ECU
#2 154 to ECU #1 152. In some embodiments, the various
vehicle applications A 620a, B 6205, C 620c, and D 6204,
may be sub-components of a distributed vehicle software
application and may be redistributed according to the
updated deployment plan.

[0059] FIG. 7 illustrates a more detailled view of an
in-vehicle application deployment planner/orchestrator of a
vehicle that uses an alternative localized execution plan that
prioritizes availability of safety critical applications over
non-satety critical applications, according to some embodi-
ments. In some embodiments, the vehicle data receive
module 604 may detect that connection to the network 1s
unavailable 702. For example, the vehicle data receive
module 604 may determine that one or more of the wireless
networks that the vehicle uses to receive data, such as a
cellular network, Wi-F1 network or other wireless network 1s
not available. Subsequent to the detection 702, the ECU task
delegator 324 may enable a localized execution plan 706 to
be used while the network connection i1s unavailable. In
some embodiments, istead of detecting that the connection
to the network i1s unavailable, the wvehicle data receive
module 604 may detect that connection to the vehicle
software deployment management system 100 1s not avail-

US 2024/0192940 Al

able or that the communication quality or speed has

degraded beyond a threshold level.

[0060] In some embodiments, the ECU task delegator 324
may contain emergency localized execution plan 704 and
may generate an additional localized execution plan that
deploys safety critical application over non-saiety critical
applications 710. The emergency localized execution plan
704 may be a part of the ECU task delegator 324 or may be
received from the vehicle software deployment management
system 100. For example, 1n the illustrated vehicle 142, the
safety critical applications A 720qa, applications B 7205, and
applications C 720¢ may be deployed in ECU #1 152, ECU
#2 154, and ECU #3 1356 respectively over the original
vehicle applications A 620a, B 6204, and C 620c¢. In some
embodiments, safety-critical applications may include fea-
tures that impact passenger safety (such as airbag deploy-
ment application) and/or critical vehicle performance fea-
tures (such as brake control application). In some
embodiments, non-safety critical applications may include
various 1nfotainment applications and/or fuel efliciency
applications. The emergency localized execution plan may
include prior determination as to which applications are
considered safety-critical and/or non-safety critical.

[0061] FIG. 8 illustrates a vehicle software deployment
management system dynamically generating deployment
plan for vehicle applications based on various vehicle/
vehicle fleet data streams and machine learning (ML) mod-
els, according to some embodiments. In some embodiments,
ECU configuration and vehicle diagnostic data stream from
the fleet of vehicles 802 may be sent over the network 120
to the vehicle application transmission module 112. Subse-
quent to receiving the data stream from the fleet 802, the
vehicle application transmission module 112 may send
vehicle data 806 to the vehicle data ML inference module
110 that generates ML inferences 808. The generated ML
inferences 808 may be used by the deployment plan gen-
crator 104 to determine the optimal application deployment
configuration and generate deployment plans.

[0062] In some embodiments, using the vehicle data 806
from the fleet, the vehicle data ML inference module may
train one or more ML models to generate one or more ML
inferences. For example, based on the vehicle data 806, the
trained ML model may make an inference indicating a
negative impact of deployment of a particular application to
a particular ECU environment. The deployment plan gen-
erator 104 may use the ML inference to generate and send
a deployment plan based, at least 1n part, on the generated
ML 1nference 810. The vehicle application transmission
module 112 may send the deployment plan for the vehicle/
fleet based on the ML inference 812 as discussed in FIGS.
5-6. In some embodiments, the vehicle data ML inference
module 110 may train the one or more ML models based on
current and historical updates to the ECU configuration and
diagnostic data of the vehicle 804 sent from the vehicle 142.
The vehicle application transmission module 112 may send
an updated deployment plan for the vehicle 814 based on the
ML inference obtained from the ML model using the current
and historical updates to the ECU configuration and diag-
nostic data of the vehicle 804.

[0063] FIG. 9 illustrates a flowchart of operations per-
formed by a vehicle software deployment management
system to send signed serialized data chunks of a vehicle
software application images and/or a deployment plan for

Jun. 13, 2024

the software application to vehicles using a protocol agnos-
tic transmission format, according to some embodiments.
[0064] At block 910, a vehicle application deployment
planner generates a deployment plan for a set of application
packages for use 1n implementing a vehicle software appli-
cation. In some embodiments, the application packages may
be contamner images that are obtammed from an external
image repository as discussed 1 FIG. 2. In some embodi-
ments, the application packages may be container images
according to an Open Container Image (OCI) format.
[0065] At block 920, the vehicle application deployment
planner generates data chunks for the set of application
packages that are configured to be reconstructed by a vehicle
application deployment planner of a vehicle. In some
embodiments, the data chunks may be stored 1n a first 1n first
out (FIFO) type queue in the vehicle application deployment
planner as discussed 1n FIGS. 1 and 2. However, in some
embodiments, other queue sequencing may be used.
[0066] At block 930, the vehicle application deployment
planner sends the deployment plan and the data chunks to
the vehicle. The deployment plan causes the vehicle appli-
cation deployment planner to generate an execution plan for
implementing the vehicle software application based on the
deployment plan, and causes the vehicle application deploy-
ment planner to, upon determination of full reconstruction of
the data chunks for the set of application packages, carry out
the execution plan to implement the vehicle software appli-
cation at the vehicle i accordance with the deployment
plan.

[0067] FIG. 10 illustrates a flowchart of operations per-
formed by an in-vehicle application deployment planner/
orchestrator of a vehicle to carry out execution of a plan to
implement a vehicle software application, wherein the
execution plan 1s generated by the in-vehicle application
deployment planner/orchestrator based on a received
deployment plan for the in-vehicle application, according to
some embodiments.

[0068] At block 1010, an in-vehicle application deploy-
ment planner/orchestrator receives a deployment plan for a
set of application packages for use in implementing a
vehicle soltware application and also receives data chunks
for the set of application packages configured to be recon-
structed by a vehicle application deployment planner of a
vehicle. In some embodiments, data chunks may be recerved
in a protocol agnostic transmission format that 1s compatible
with different transmission protocols as discussed 1n FIGS.
1 and 2.

[0069] At block 1020, the in-vehicle application deploy-
ment planner/orchestrator generates an execution plan for
implementing the vehicle software application at the vehicle
based on the received deployment plan via a vehicle appli-
cation deployment planner.

[0070] At block 1030, the in-vehicle application deploy-

ment planner/orchestrator reconstructs the data chunks. In
some embodiments, the data chunks may be queued 1n a
package manager 322 as discussed 1n FIG. 3.

[0071] At block 1040, the in-vehicle application deploy-
ment planner/orchestrator determines that the set of appli-
cation packages are fully reconstructed from the received

data chunks.

[0072] At block 1050, the in-vehicle application deploy-

ment planner/orchestrator carries out the execution plan to
implement the vehicle software application at the vehicle 1n
accordance with the deployment plan.

US 2024/0192940 Al

[0073] FIG. 11 illustrates a flowchart of operations per-
formed by a vehicle software deployment management
system to dynamically generate and send, based on streams
of vehicle data, deployment plans for deploying the vehicle
software application, according to some embodiments.

[0074] At block 1110, a vehicle application deployment
planner receives a stream of vehicle data that includes
updates indicating an electronic control unit (ECU) configu-
ration for a vehicle and/or diagnostic data of the vehicle. In
some embodiments, vehicle data received may include one
or more of a capacity of compute resources of the ECU,
types of containers the ECU supports, configurations of
other applications deployed to the ECU as discussed 1n FIG.

4.

[0075] At block 1120, the vehicle application deployment
planner dynamically generates, based on the ECU configu-
ration and/or the diagnostic data indicated 1n the stream, the
deployment plan for the vehicle software application.

[0076] At block 1130, the vehicle application deployment
planner sends, based on a request to deploy to the vehicle a
vehicle software application, a deployment plan that gener-
ates and/or relays localized execution plans for deploying
the vehicle software application and implements the local-
1zed execution plans. In some embodiments, the deployment
plan may be sent based on recerving a certification from a
certification destination that performs a certification work-

flow as discussed in FIG. §.

[0077] FIG. 12 illustrates a flowchart of operations per-
formed by an in-vehicle application deployment planner/
orchestrator of a vehicle to carry out an execution plan to
implement a vehicle software application according to a
dynamically generated deployment plan received by an
in-vehicle application deployment planner/orchestrator,
according to some embodiments.

[0078] At block 1210, an in-vehicle application deploy-
ment planner/orchestrator sends from a vehicle of a fleet of
vehicles to the dynamic vehicle software deployment plan-
ner, a stream of vehicle data indicating an electronic control
unit (ECU) configuration of the vehicles of the fleet and/or
indicating diagnostic data of the vehicles of the fleet.

[0079] At block 1220, the in-vehicle application deploy-
ment planner/orchestrator receives a deployment plan for a
distributed vehicle software application that has been
dynamically generated, based on the indications of the
stream, by a cloud-based dynamic vehicle software deploy-
ment planner. In some embodiments, the deployment plan
received by the m-vehicle application deployment planner/
orchestrator may be a deployment plan that was optimized
tor the vehicle based on historical data of the vehicle and/or

a fleet of vehicles, as discussed in FIG. 5 and FIG. 8.

[0080] At block 1230, the in-vehicle application deploy-
ment planner/orchestrator generates and/or relays localized
execution plans for deploying the distributed vehicle sofit-
ware application based on the deployment plan. In some
embodiments, the localized execution plans may be relayed
only to the approprniate ECUs 1nstead of being transmitted to
all ECUs of the vehicle as discussed in FIG. 3.

[0081] At block 1240, the in-vehicle application deploy-
ment planner/orchestrator implements the execution plans at

the vehicle to install the distributed vehicle software appli-
cation on the vehicle.

Jun. 13, 2024

Example Computer System

[0082] Any of various computer systems may be config-
ured to mmplement processes associated with a vehicle
soltware deployment management system, in-vehicle appli-
cation deployment planner/orchestrator, an operating system
in a vehicle or device, or any other component of the above
figures. For example, FIG. 13 illustrates a block diagram
illustrating an example computer system that implements
some or all of the techniques described herein, according to
some embodiments. In various embodiments, the vehicle
soltware deployment management system, the provider net-
work that implement the vehicle software deployment man-
agement system and other cloud services, the operating
system 1n a vehicle or device, or any other component of the
above figures FIGS. 1-12 may each include one or more
computer systems 1300 such as that illustrated in FIG. 13.
[0083] In the illustrated embodiment, computer system
1300 1ncludes one or more processors 1310 coupled to a
system memory 1320 via an mput/output (I/O) interface
1330. Computer system 1300 further includes a network
interface 1340 coupled to I/O interface 1330. In some
embodiments, computer system 1300 may be illustrative of
servers 1mplementing enterprise logic or that provide a
downloadable application, while in other embodiments serv-
ers may include more, fewer, or different elements than
computer system 1300.

[0084] In various embodiments, computing device 1300
may be a uniprocessor system including one processor or a
multiprocessor system including several processors 1310a-
13107 (e.g., two, four, eight, or another suitable number).
Processors 13104-1310z may include any suitable proces-
sors capable of executing instructions. For example, 1n
various embodiments, processors 1310a-13107 may be pro-
cessors 1mplementing any of a variety of instruction set
formats (ISAs), such as the x86, PowerPC, SPARC, or MIPS
ISAs, or any other suitable ISA. In some embodiments,
processors 1310a-13107 may include specialized processors
such as graphics processing units (GPUs), application spe-
cific integrated circuits (ASICs), etc. In multiprocessor
systems, each of processors 1310a-131072 may commonly,
but not necessarily, implement the same ISA.

[0085] System memory 1320 may be configured to store
program 1nstructions and data accessible by processor(s)
13104-1310%. In various embodiments, system memory
1320 may be mmplemented using any suitable memory
technology, such as static random-access memory (SRAM),
synchronous dynamic RAM (SDRAM), nonvolatile/Flash-
type memory, or any other type of memory. In the 1llustrated
embodiment, program 1instructions and data implementing
one or more desired functions, such as those methods,
techniques, and data described above, are shown stored
within system memory 1320 as code (e.g., program 1nstruc-
tions) 1325 and data storage 1335.

[0086] In one embodiment, I/O imterface 1330 may be
configured to coordinate I/O ftrailic between processors
13104-13107, system memory 1320, and any peripheral
devices 1n the device, including network interface 1340 or
other peripheral iterfaces. In some embodiments, I/O 1nter-
face 1330 may perform any necessary protocol, timing, or
other data transformations to convert data signals from one
component (e.g., system memory 1320) into a format suit-
able for use by another component (e.g., processor 1310). In
some embodiments, I/O iterface 1330 may include support
for devices attached through various types of peripheral

US 2024/0192940 Al

buses, such as a variant of the Peripheral Component Inter-
connect (PCI) bus standard or the Universal Serial Bus
(USB) standard, for example. In some embodiments, 1/O
interface 1330 may include support for devices attached via
an automotive CAN bus, etc. In some embodiments, the
function of I/O interface 1330 may be split into two or more
separate components, such as a north bridge and a south
bridge, for example. Also, in some embodiments some or all
of the functionality of I/O interface 1330, such as an
interface to system memory 1320, may be incorporated
directly into processors 1310a-13107.

[0087] In some embodiments, the network interface 1340
may be coupled to I/O interface 1330, and one or more
input/output devices 1350, such as cursor control device
1360, keyboard 1370, and display(s) 1380. In some cases, it
1s contemplated that embodiments may be implemented
using a single instance of computer system 1300, while in
other embodiments multiple such computer systems, or
multiple nodes making up computer system 1300, may be
configured to host different portions or instances program
instructions as described above for various embodiments.
For example, in one embodiment some elements of the
program 1instructions may be implemented via one or more
nodes of computer system 1300 that are distinct from those
nodes implementing other elements.

[0088] Network interface 1340 may be configured to allow
data to be exchanged between computing device 1300 and
other devices associated with a network or networks. In
various embodiments, network interface 1340 may support
communication via any suitable wired or wireless general
data networks, such as types of Ethernet networks, cellular
networks, Bluetooth networks, Wi1-F1 networks, Ultra-wide-
band Networks, for example. Additionally, network inter-
tace 1340 may support communication via telecommunica-
tions/telephony networks such as analog voice networks or
digital fiber communications networks, via storage area
networks such as Fibre Channel SANs, or via any other
suitable type of network and/or protocol.

[0089] In some embodiments, system memory 1320 may
be one embodiment of a computer-readable (e.g., computer-
accessible) medium configured to store program instructions
and data as described above for implementing embodiments
of the corresponding methods, systems, and apparatus.
However, 1 other embodiments, program instructions and/
or data may be received, sent, or stored upon diflerent types
of computer-readable media. Generally speaking, a com-
puter-readable medium may include non-transitory storage
media or memory media such as magnetic or optical media,
e.g., disk or DVD/CD coupled to computing device 1300 via
I/O iterface 1330. One or more non-transitory computer-
readable storage media may also include any volatile or
nonvolatile media such as RAM (e.g., SDRAM, DDR
SDRAM, RDRAM, SRAM, etc.), ROM, etc., that may be
included in some embodiments of computing device 1300 as
system memory 1320 or another type of memory. Further, a
computer-readable medium may 1nclude transmission media
or signals such as electrical, electromagnetic, or digital
signals, conveyed via a communication medium such as a
network and/or a wireless link, such as may be implemented
via network iterface 1340. Portions or all of multiple
computing devices such as that 1llustrated 1n FIG. 13 may be
used to implement the described functionality in various
embodiments; for example, software components running
on a variety of different devices and servers may collaborate

Jun. 13, 2024

to provide the functionality. In some embodiments, portions
of the described functionality may be implemented using
storage devices, network devices, or various types of com-
puter systems. The term “computing device” and “ECU” as
used herein, refers to at least all these types of devices, and
1s not limited to these types of devices.

[0090] The various methods as illustrated in the figures
and described herein represent illustrative embodiments of
methods. The methods may be implemented manually, 1n
software, 1n hardware, or in a combination thereof. The
order of any method may be changed, and various elements
may be added, reordered, combined, omitted, modified, etc.
For example, in one embodiment, the methods may be
implemented by a computer system that includes a processor
executing program instructions stored on a computer-read-
able storage medium coupled to the processor. The program
instructions may be configured to implement the function-
ality described herein (e.g., the functionality of the data
transfer tool, various services, databases, devices and/or
other communication devices, etc.).

[0091] Various modifications and changes may be made as
would be obvious to a person skilled in the art having the
benefit of this disclosure. It 1s intended to embrace all such
modifications and changes and, accordingly, the above
description to be regarded 1n an illustrative rather than a
restrictive sense.

[0092] Various embodiments may further include receiv-
ing, sending, or storing nstructions and/or data implemented
in accordance with the foregoing description upon a com-
puter-accessible medium. Generally speaking, a computer-
accessible medium may include storage media or memory
media such as magnetic or optical media, e.g., disk or

DVD/CD-ROM, volatile or nonvolatile media such as RAM
(e.g., SDRAM, DDR, RDRAM, SRAM, etc.), ROM, etc., as
well as transmission media or signals such as electrical,
clectromagnetic, or digital signals, conveyed via a commu-
nication medium such as network and/or a wireless link.

What 1s claimed 1s:
1. A system, comprising;
one or more computing devices configured to implement
a vehicle soltware deployment management system
configured to:
generate a deployment plan for a set of application
packages for use in i1mplementing a distributed
vehicle soltware application;
generate signed sernalized data chunks for the set of
application packages, wherein the signed senalized
data chunks are configured to be used by a vehicle
application deployment planner of a vehicle to
reconstruct the set of application packages; and
send the deployment plan and the signed serialized data
chunks to the vehicle, wherein the deployment plan
comprises instructions that, when executed, cause
the vehicle application deployment planner to:
generate an execution plan for implementing the
distributed vehicle software application at the
vehicle based on the deployment plan; and
upon determination of full reconstruction of the
application packages, carry out the execution plan
to 1mplement the distributed vehicle software
application at the vehicle in accordance with the
deployment plan.

2. The system of claim 1, wherein the vehicle software
deployment management system 1s further configured to:

US 2024/0192940 Al

receive, from a client, prior to the generating the deploy-
ment plan for the set of application packages, deploy-
ment nstructions comprising one or more indications
of application packages to be included 1n the set of
application packages; and

retrieve, from one or more application package registries

accessible by the vehicle software deployment man-
agement system, the set of application packages indi-
cated to the vehicle deployment software management
system by the client.

3. The system of claim 1, wherein the deployment plan for
the distributed vehicle software application comprises, for
use 1n 1mplementing the distributed vehicle software appli-
cation at the vehicle:

one or more 1ndications ol deployment dependencies

between respective ones of the set of the application
packages; or

conditional rules for deployment of respective ones of the

set of application packages.
4. The system of claim 1, wherein respective ones of the
application packages of the set of application packages are
formatted according to an Open Container Initiative (OCI)
format.
5. A method, comprising:
generating, via a vehicle software management system, a
deployment plan for a set of application packages for
use 1in 1implementing a vehicle software application;

generating data chunks for the set of application pack-
ages, wherein the data chunks are configured to be used
by a vehicle application deployment planner of a
vehicle to reconstruct the set of application packages;
and

sending the deployment plan and the data chunks to the

vehicle, wherein the deployment plan comprises

instructions that, when executed, cause the vehicle

application deployment planner to:

generate an execution plan for implementing the
vehicle software application at the vehicle based on
the deployment plan; and

upon determination of full reconstruction of the set of
application packages, carry out the execution plan to
implement the vehicle software application at the
vehicle 1 accordance with the deployment plan.

6. The method of claim 3, further comprising:

receiving, from a client, prior to generating the deploy-

ment plan for the set of application packages, deploy-
ment nstructions comprising one or more indications
of application packages to be included 1n the set of
application packages.

7. The method of claim 6, further comprising;:

retrieving, from one or more application package storage
locations accessible by the vehicle software manage-
ment system, the set of application packages indicated
by the client.

8. The method of claim 7, further comprising;:

receiving, from a client of the vehicle software manage-
ment system, one or more client-provided custom
application packages; and

storing 1n the one or more container storage locations the
one or more client-provided custom application pack-
ages,

wherein at least a portion of the set of application pack-
ages retrieved for deployment include the one or more
client-provided custom application packages.

Jun. 13, 2024

9. The method of claim 5, wherein the deployment plan
for the vehicle software application comprises, for use 1n
implementing the vehicle software application at the
vehicle:

one or more indications of deployment dependencies

between respective ones of the set of the application
packages; or

conditional rules for deployment of respective ones of the

set ol application packages.

10. The method of claim 5, wherein application packages
of the set of application packages are formatted according to
an Open Container Initiative (OCI) format.

11. The method of claim 5, wherein the deployment plan
and the data chunks sent to the vehicle are sent using a
protocol agnostic transmission format that 1s compatible
with a plurality of diflerent transmission protocols used for
communications between a given remote server and a given
vehicle.

12. The method of claam 11, wheremn the plurality of
different transmission protocols with which the protocol
agnostic format 1s compatible comprises, at least:

a Message Queue Telemetry Transport (MQTT) protocol.

13. One or more non-transitory, computer-readable stor-
age media, storing program instructions that when executed
On Or across one or more processors cause the one or more
processors to implement:

recetving, from a vehicle software deployment manage-

ment system:

a deployment plan for implementing a vehicle software
application at a vehicle; and

data chunks representing a set of application packages
to be used to implement the vehicle soitware appli-
cation at the vehicle, wherein the data chunks are
configured to be used at the vehicle to reconstruct the
set of application packages;

generating, via a vehicle application deployment planner,

an execution plan for implementing the vehicle sofit-
ware application at the vehicle based on the recerved
deployment plan;

reconstructing, at the vehicle, using the data chunks, the

application packages for the vehicle software applica-
tion; and

upon determination of full reconstruction of the applica-

tion packages for the vehicle software application,
carrying out the execution plan to implement the
vehicle software application at the vehicle 1n accor-
dance with the deployment plan.

14. The one or more non-transitory, computer-readable
storage media of claim 13, wherein said carrying out the
execution plan comprises:

determining, based on the deployment plan, respective

clectronic control units (ECUs) of a plurality of ECUs
of the vehicle that are to be used to execute code
included in the respective application packages of the
set of application packages; and

transmitting the respective application packages to the

corresponding respective ECUS.

15. The one or more non-transitory, computer-readable
storage media of claim 14, wherein the respective applica-
tion packages are transmitted to the corresponding respec-
tive ECUs via a plurality of different imn-vehicle communi-
cation protocols comprising two or more of:

a controller area network (CAN) protocol;

a remote procedure call (RPC) protocol;

US 2024/0192940 Al

a controller area network flexible data-rate (CAN FD)

protocol;

a low-speed CAN protocol;
a high-speed CAN protocol;
a Society of Automotive Engineers (SAE) 11939 protocol;

a CANopen protocol; or

an on-board diagnostics (OBD) protocol.

16. The one or more non-transitory, computer-readable

storage media of claim 14,

wherein said transmitting the

respective application packages to the corresponding respec-
tive ECUs comprises sequentially transmitting the respec-
tive application packages to the respective ECUs according,
to a deployment sequence as defined 1n the deployment plan.

17. The one or more non-transitory, computer-readable

storage media of claim 13, w.

nerein the program instructions

that when executed cause f{
turther implement:

1C OIIC O IMOIC Processors {o

generating, by the vehicle application deployment plan-
ner, for respective ones of the ECUs, a respective
localized ECU execution plan for deploying respective
ones of the application packages at the respective ones

of the ECUs, wherein

the localized ECU execution

plans are generated based, at least 1n part, on metadata
describing respective execution environments of the
respective ones of the ECUs; and

sending the respective localized ECU execution plans to
the respective ones of the ECUs.

18. The one or more non-transitory, computer-readable

storage media of claim 13,

wherein the deployment plan

14

Jun. 13, 2024

comprises conditional rules for the deployment of the set of
application packages, wherein the conditional rules com-
prise one or more of:

a conditional rule comprising a contingent deployment
location to be used for a given one of the application
packages 1n response to a failure of deployment of the
given application package or another application pack-
age 1n an electronic control units (ECUs) of a plurality
of ECUSs of the vehicle;

a conditional rule comprising a contingent deployment
location for a given application package 1n response to
a successiul deployment of another one of the appli-
cation packages in the ECU of the plurality of ECUs;
or

a conditional rule for selecting a deployment location for
a given application package based on respective states,
characteristics, and/or configurations of respective ones
of the ECUs of the vehicle.

19. The one or more non-transitory, computer-readable
storage media of claim 13, wherein the received deployment
plan and the received data chunks are transmitted to the
vehicle application deployment planner using a protocol
agnostic chunked transmission, wherein the protocol agnos-
tic chunked transmission 1s compatible with a plurality of
different server to vehicle transmission protocols.

20. The one or more non-transitory, computer-readable
storage media of claim 19, wherein the plurality of different
transmission protocols with which the protocol agnostic
format 1s compatible comprises, at least:

a Message Queue Telemetry Transport (MQT'T) protocol.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

