Collections: | |
- Name: CentripetalNet | |
Metadata: | |
Training Data: COCO | |
Training Techniques: | |
- Adam | |
Training Resources: 16x V100 GPUs | |
Architecture: | |
- Corner Pooling | |
- Stacked Hourglass Network | |
Paper: | |
URL: https://arxiv.org/abs/2003.09119 | |
Title: 'CentripetalNet: Pursuing High-quality Keypoint Pairs for Object Detection' | |
README: configs/centripetalnet/README.md | |
Code: | |
URL: https://github.com/open-mmlab/mmdetection/blob/v2.5.0/mmdet/models/detectors/cornernet.py#L9 | |
Version: v2.5.0 | |
Models: | |
- Name: centripetalnet_hourglass104_16xb6-crop511-210e-mstest_coco | |
In Collection: CentripetalNet | |
Config: configs/centripetalnet/centripetalnet_hourglass104_16xb6-crop511-210e-mstest_coco.py | |
Metadata: | |
Batch Size: 96 | |
Training Memory (GB): 16.7 | |
inference time (ms/im): | |
- value: 270.27 | |
hardware: V100 | |
backend: PyTorch | |
batch size: 1 | |
mode: FP32 | |
resolution: (800, 1333) | |
Epochs: 210 | |
Results: | |
- Task: Object Detection | |
Dataset: COCO | |
Metrics: | |
box AP: 44.8 | |
Weights: https://download.openmmlab.com/mmdetection/v2.0/centripetalnet/centripetalnet_hourglass104_mstest_16x6_210e_coco/centripetalnet_hourglass104_mstest_16x6_210e_coco_20200915_204804-3ccc61e5.pth | |