File size: 12,646 Bytes
84c7d81
 
5a5c1da
21f55b7
 
84c7d81
21f55b7
 
 
 
 
 
 
614f25e
21f55b7
 
 
 
 
84c7d81
 
 
 
 
 
21f55b7
 
84c7d81
e0a73dc
ece4833
5a5c1da
 
 
 
 
 
 
 
 
21f55b7
 
 
 
 
 
 
 
5a5c1da
 
 
21f55b7
 
 
 
 
 
5a5c1da
c27829f
21f55b7
 
5a5c1da
57db413
21f55b7
 
 
 
 
 
5a5c1da
21f55b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a5c1da
21f55b7
5a5c1da
57db413
21f55b7
57db413
21f55b7
 
87643e5
21f55b7
 
5a5c1da
21f55b7
5a5c1da
 
 
 
 
21f55b7
5a5c1da
 
21f55b7
5a5c1da
 
 
21f55b7
 
 
 
5a5c1da
21f55b7
 
 
5a5c1da
 
 
 
 
21f55b7
5a5c1da
21f55b7
 
5a5c1da
 
 
 
 
21f55b7
 
 
 
 
 
 
5a5c1da
21f55b7
5a5c1da
21f55b7
5a5c1da
21f55b7
5a5c1da
87643e5
5a5c1da
 
21f55b7
 
 
 
 
 
 
 
 
 
5a5c1da
21f55b7
 
 
 
5a5c1da
21f55b7
 
5a5c1da
21f55b7
 
5a5c1da
21f55b7
5a5c1da
 
21f55b7
 
5a5c1da
21f55b7
 
84c7d81
21f55b7
 
 
 
 
 
 
 
 
 
 
614f25e
21f55b7
 
 
 
 
 
 
90eb184
21f55b7
 
 
 
 
 
 
 
 
5a5c1da
21f55b7
 
 
 
 
87643e5
21f55b7
 
 
 
 
 
 
 
 
57db413
21f55b7
 
5a5c1da
 
21f55b7
5a5c1da
 
21f55b7
5a5c1da
21f55b7
 
 
 
 
5a5c1da
21f55b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a5c1da
21f55b7
 
 
 
 
 
 
 
 
 
5a5c1da
21f55b7
 
 
 
 
5a5c1da
 
21f55b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import os
import sys
import gc
import tempfile
from pathlib import Path

# κΆŒν•œ 문제 해결을 μœ„ν•œ ν™˜κ²½ λ³€μˆ˜ μ„€μ • (μ΅œμƒλ‹¨μ— μœ„μΉ˜)
temp_dir = tempfile.gettempdir()
os.environ["STREAMLIT_HOME"] = temp_dir
os.environ["STREAMLIT_CONFIG_DIR"] = os.path.join(temp_dir, ".streamlit")
os.environ["STREAMLIT_SERVER_HEADLESS"] = "true"
os.environ["STREAMLIT_BROWSER_GATHER_USAGE_STATS"] = "false"
os.environ["TOKENIZERS_PARALLELISM"] = "false"

# μΊμ‹œ 디렉토리도 temp둜 μ„€μ •
os.environ["TRANSFORMERS_CACHE"] = os.path.join(temp_dir, "transformers_cache")
os.environ["HF_HOME"] = os.path.join(temp_dir, "huggingface")

# PyTorch 클래슀 경둜 좩돌 ν•΄κ²°
try:
    import torch
    import importlib.util
    torch_classes_path = os.path.join(os.path.dirname(importlib.util.find_spec("torch").origin), "classes")
    if hasattr(torch, "classes"):
        torch.classes.__path__ = [torch_classes_path]
except Exception:
    pass

import streamlit as st

# transformers 라이브러리 import 및 μƒνƒœ 체크
try:
    from transformers import AutoTokenizer, AutoModelForCausalLM
    import torch
    TRANSFORMERS_AVAILABLE = True
except ImportError as e:
    TRANSFORMERS_AVAILABLE = False
    st.error(f"Transformers 라이브러리λ₯Ό 뢈러올 수 μ—†μŠ΅λ‹ˆλ‹€: {e}")

# νŽ˜μ΄μ§€ μ„€μ •
st.set_page_config(
    page_title="TinyLlama Demo",
    page_icon="πŸ¦™",
    layout="wide",
    initial_sidebar_state="expanded"
)

st.title("πŸ¦™ TinyLlama 1.1B (CPU μ „μš©) 데λͺ¨")

if not TRANSFORMERS_AVAILABLE:
    st.error("ν•„μš”ν•œ 라이브러리λ₯Ό μ„€μΉ˜ν•΄μ£Όμ„Έμš”:")
    st.code("""
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
pip install transformers
pip install streamlit
    """, language="bash")
    st.stop()

@st.cache_resource(show_spinner=False)
def load_tinyllama_model():
    """TinyLlama 1.1B λͺ¨λΈ λ‘œλ“œ (CPU Only)"""
    try:
        # μ—¬λŸ¬ κ°€λŠ₯ν•œ λͺ¨λΈ 이름 μ‹œλ„
        model_options = [
            "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T",
            "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
            "microsoft/DialoGPT-small"  # λ°±μ—… μ˜΅μ…˜
        ]
        
        for model_name in model_options:
            try:
                st.info(f"λͺ¨λΈ μ‹œλ„ 쀑: {model_name}")
                
                # ν† ν¬λ‚˜μ΄μ € λ‘œλ“œ
                tokenizer = AutoTokenizer.from_pretrained(
                    model_name,
                    trust_remote_code=True,
                    cache_dir=os.environ.get("TRANSFORMERS_CACHE")
                )
                
                # λͺ¨λΈ λ‘œλ“œ
                model = AutoModelForCausalLM.from_pretrained(
                    model_name,
                    torch_dtype=torch.float32,
                    trust_remote_code=True,
                    cache_dir=os.environ.get("TRANSFORMERS_CACHE"),
                    device_map="cpu"
                )
                
                # CPU둜 λͺ…μ‹œμ  이동 및 평가 λͺ¨λ“œ
                model = model.to("cpu")
                model.eval()
                
                # ν† ν¬λ‚˜μ΄μ € μ„€μ •
                if tokenizer.pad_token is None:
                    tokenizer.pad_token = tokenizer.eos_token
                
                # λ©”λͺ¨λ¦¬ 정리
                gc.collect()
                
                return model, tokenizer, f"βœ… {model_name} λ‘œλ“œ 성곡!"
                
            except Exception as model_error:
                st.warning(f"{model_name} λ‘œλ“œ μ‹€νŒ¨: {str(model_error)}")
                continue
        
        return None, None, "❌ λͺ¨λ“  λͺ¨λΈ λ‘œλ“œ μ‹€νŒ¨"
        
    except Exception as e:
        return None, None, f"❌ 전체 λ‘œλ“œ μ‹€νŒ¨: {str(e)}"

def generate_text(model, tokenizer, prompt, max_new_tokens=150, temperature=0.7):
    """μ•ˆμ „ν•œ ν…μŠ€νŠΈ 생성 ν•¨μˆ˜"""
    try:
        # μž…λ ₯ 길이 μ œν•œ
        max_input_length = 400
        
        # 토큰화
        inputs = tokenizer(
            prompt,
            return_tensors="pt",
            truncation=True,
            max_length=max_input_length,
            padding=False
        )
        
        # CPU둜 이동
        inputs = {k: v.to("cpu") for k, v in inputs.items()}
        input_length = inputs['input_ids'].shape[1]
        
        # μ•ˆμ „ν•œ 생성 길이 계산
        safe_max_tokens = min(max_new_tokens, 800 - input_length)
        if safe_max_tokens < 20:
            safe_max_tokens = 20
        
        # 생성 μ„€μ •
        generation_kwargs = {
            "max_new_tokens": safe_max_tokens,
            "temperature": temperature,
            "do_sample": True,
            "top_p": 0.9,
            "top_k": 50,
            "repetition_penalty": 1.1,
            "pad_token_id": tokenizer.pad_token_id or tokenizer.eos_token_id,
            "eos_token_id": tokenizer.eos_token_id,
            "use_cache": True,
            "early_stopping": True
        }
        
        # λ©”λͺ¨λ¦¬ 정리
        gc.collect()
        
        # 생성 μ‹€ν–‰
        with st.spinner("ν…μŠ€νŠΈ 생성 쀑..."):
            with torch.no_grad():
                outputs = model.generate(
                    **inputs,
                    **generation_kwargs
                )
        
        # μƒˆλ‘œ μƒμ„±λœ λΆ€λΆ„λ§Œ μΆ”μΆœ
        new_tokens = outputs[0][input_length:]
        generated_text = tokenizer.decode(new_tokens, skip_special_tokens=True)
        
        return generated_text.strip()
        
    except Exception as e:
        raise Exception(f"생성 쀑 였λ₯˜: {str(e)}")

def main():
    # λͺ¨λΈ λ‘œλ“œ
    with st.spinner("TinyLlama λͺ¨λΈ λ‘œλ”© 쀑... (처음 μ‹€ν–‰ μ‹œ λ‹€μš΄λ‘œλ“œλ‘œ 인해 μ‹œκ°„μ΄ 걸릴 수 μžˆμŠ΅λ‹ˆλ‹€)"):
        model, tokenizer, status = load_tinyllama_model()
    
    st.info(status)
    
    if not (model and tokenizer):
        st.error("λͺ¨λΈ λ‘œλ“œμ— μ‹€νŒ¨ν–ˆμŠ΅λ‹ˆλ‹€. 인터넷 연결을 ν™•μΈν•˜κ³  λ‹€μ‹œ μ‹œλ„ν•΄μ£Όμ„Έμš”.")
        return
    
    # μ‚¬μ΄λ“œλ°” μ„€μ •
    st.sidebar.header("βš™οΈ 생성 μ„€μ •")
    max_new_tokens = st.sidebar.slider("μ΅œλŒ€ μƒˆ 토큰 수", 20, 200, 100)
    temperature = st.sidebar.slider("Temperature (μ°½μ˜μ„±)", 0.1, 1.0, 0.7, 0.1)
    
    # 도움말
    st.sidebar.header("πŸ“– μ‚¬μš© κ°€μ΄λ“œ")
    st.sidebar.info("""
    **Tips:**
    - ν”„λ‘¬ν”„νŠΈλŠ” λͺ…ν™•ν•˜κ³  κ°„κ²°ν•˜κ²Œ
    - CPU μ „μš©μ΄λ―€λ‘œ 생성에 μ‹œκ°„μ΄ κ±Έλ¦½λ‹ˆλ‹€
    - 첫 μ‹€ν–‰ μ‹œ λͺ¨λΈ λ‹€μš΄λ‘œλ“œλ‘œ μ‹œκ°„μ΄ 더 κ±Έλ¦½λ‹ˆλ‹€
    """)
    
    # 메인 μΈν„°νŽ˜μ΄μŠ€
    st.header("πŸ’¬ ν…μŠ€νŠΈ 생성")
    
    # 예제 ν”„λ‘¬ν”„νŠΈ
    col1, col2 = st.columns([2, 1])
    
    with col1:
        example_prompts = [
            "μ‚¬μš©μž μ •μ˜ μž…λ ₯",
            "The future of artificial intelligence is",
            "Once upon a time in a magical forest,",
            "Python is a programming language that",
            "Climate change is an important issue because",
            "The benefits of reading books include"
        ]
        
        selected_prompt = st.selectbox("예제 ν”„λ‘¬ν”„νŠΈ 선택:", example_prompts)
    
    with col2:
        st.write("") # 곡간 확보
        st.write("") # 곡간 확보
        if st.button("🎲 랜덀 예제", help="λžœλ€ν•œ 예제 ν”„λ‘¬ν”„νŠΈ 선택"):
            import random
            random_prompt = random.choice(example_prompts[1:])  # 첫 번째 μ œμ™Έ
            st.session_state.random_prompt = random_prompt
    
    # ν”„λ‘¬ν”„νŠΈ μž…λ ₯
    if selected_prompt == "μ‚¬μš©μž μ •μ˜ μž…λ ₯":
        default_prompt = st.session_state.get('random_prompt', '')
        prompt = st.text_area(
            "ν”„λ‘¬ν”„νŠΈλ₯Ό μž…λ ₯ν•˜μ„Έμš”:",
            value=default_prompt,
            height=100,
            placeholder="여기에 ν…μŠ€νŠΈλ₯Ό μž…λ ₯ν•˜μ„Έμš”..."
        )
    else:
        prompt = st.text_area(
            "ν”„λ‘¬ν”„νŠΈ:",
            value=selected_prompt,
            height=100
        )
    
    # 토큰 수 ν‘œμ‹œ
    if prompt and tokenizer:
        try:
            token_count = len(tokenizer.encode(prompt))
            st.caption(f"ν˜„μž¬ ν”„λ‘¬ν”„νŠΈ 토큰 수: {token_count}")
            if token_count > 400:
                st.warning("⚠️ ν”„λ‘¬ν”„νŠΈκ°€ λ„ˆλ¬΄ κΉλ‹ˆλ‹€. 400 ν† ν°μœΌλ‘œ μžλ™ μž˜λ¦Όλ©λ‹ˆλ‹€.")
        except:
            pass
    
    # 생성 λ²„νŠΌ
    col1, col2, col3 = st.columns([1, 1, 2])
    
    with col1:
        generate_btn = st.button("πŸš€ 생성 μ‹œμž‘", type="primary", use_container_width=True)
    
    with col2:
        clear_btn = st.button("πŸ—‘οΈ κ²°κ³Ό μ§€μš°κΈ°", use_container_width=True)
    
    # κ²°κ³Ό μ§€μš°κΈ°
    if clear_btn:
        if 'generated_result' in st.session_state:
            del st.session_state['generated_result']
        st.rerun()
    
    # ν…μŠ€νŠΈ 생성
    if generate_btn and prompt.strip():
        try:
            # 생성 μ§„ν–‰λ₯  ν‘œμ‹œ
            progress_container = st.container()
            with progress_container:
                progress_bar = st.progress(0)
                status_text = st.empty()
                
                status_text.text("토큰화 쀑...")
                progress_bar.progress(20)
                
                status_text.text("ν…μŠ€νŠΈ 생성 쀑... (CPUμ—μ„œ μ‹€ν–‰λ˜λ―€λ‘œ μ‹œκ°„μ΄ κ±Έλ¦½λ‹ˆλ‹€)")
                progress_bar.progress(40)
                
                # μ‹€μ œ 생성
                generated_text = generate_text(
                    model, tokenizer, prompt.strip(),
                    max_new_tokens, temperature
                )
                
                progress_bar.progress(80)
                status_text.text("κ²°κ³Ό 처리 쀑...")
                
                # κ²°κ³Ό μ €μž₯
                full_result = prompt + generated_text
                st.session_state['generated_result'] = {
                    'prompt': prompt,
                    'generated': generated_text,
                    'full_text': full_result
                }
                
                progress_bar.progress(100)
                status_text.text("μ™„λ£Œ!")
                
                # μ§„ν–‰λ₯  ν‘œμ‹œ 제거
                progress_bar.empty()
                status_text.empty()
                
        except Exception as e:
            st.error(f"생성 쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€: {str(e)}")
            st.info("πŸ’‘ λ‹€μ‹œ μ‹œλ„ν•˜κ±°λ‚˜ 더 짧은 ν”„λ‘¬ν”„νŠΈλ₯Ό μ‚¬μš©ν•΄λ³΄μ„Έμš”.")
    
    elif generate_btn:
        st.warning("⚠️ ν”„λ‘¬ν”„νŠΈλ₯Ό μž…λ ₯ν•΄μ£Όμ„Έμš”.")
    
    # κ²°κ³Ό ν‘œμ‹œ
    if 'generated_result' in st.session_state:
        result = st.session_state['generated_result']
        
        st.header("πŸ“ 생성 κ²°κ³Ό")
        
        # νƒ­μœΌλ‘œ ꡬ뢄
        tab1, tab2 = st.tabs(["🎯 μƒμ„±λœ ν…μŠ€νŠΈλ§Œ", "πŸ“„ 전체 ν…μŠ€νŠΈ"])
        
        with tab1:
            st.markdown("**μƒˆλ‘œ μƒμ„±λœ λΆ€λΆ„:**")
            st.markdown(f'<div style="background-color: #f0f2f6; padding: 15px; border-radius: 10px; border-left: 4px solid #4CAF50;">{result["generated"]}</div>', unsafe_allow_html=True)
        
        with tab2:
            st.markdown("**전체 ν…μŠ€νŠΈ (ν”„λ‘¬ν”„νŠΈ + 생성):**")
            st.text_area(
                "전체 κ²°κ³Ό:",
                value=result['full_text'],
                height=200,
                disabled=True
            )
        
        # λ‹€μš΄λ‘œλ“œ λ²„νŠΌ
        st.download_button(
            label="πŸ’Ύ ν…μŠ€νŠΈ 파일둜 μ €μž₯",
            data=result['full_text'],
            file_name=f"tinyllama_output_{len(result['full_text'])}.txt",
            mime="text/plain",
            use_container_width=True
        )
    
    # μ‹œμŠ€ν…œ 정보 μ‚¬μ΄λ“œλ°”
    st.sidebar.header("πŸ’» μ‹œμŠ€ν…œ 정보")
    st.sidebar.write(f"**Python:** {sys.version.split()[0]}")
    if TRANSFORMERS_AVAILABLE:
        st.sidebar.write(f"**PyTorch:** {torch.__version__}")
        st.sidebar.write(f"**CUDA μ‚¬μš© κ°€λŠ₯:** {'βœ…' if torch.cuda.is_available() else '❌'}")
        st.sidebar.write(f"**μ‹€ν–‰ λͺ¨λ“œ:** CPU μ „μš©")
    
    # μ„±λŠ₯ 팁
    with st.sidebar.expander("πŸš€ μ„±λŠ₯ μ΅œμ ν™” 팁"):
        st.markdown("""
        **속도 ν–₯상:**
        - ν”„λ‘¬ν”„νŠΈλ₯Ό 100단어 μ΄ν•˜λ‘œ μœ μ§€
        - 토큰 수λ₯Ό 150개 μ΄ν•˜λ‘œ μ œν•œ
        - μ—¬λŸ¬ νƒ­μ—μ„œ λ™μ‹œ μ‹€ν–‰ν•˜μ§€ μ•ŠκΈ°
        
        **λ©”λͺ¨λ¦¬ μ ˆμ•½:**
        - λ‹€λ₯Έ 무거운 μ• ν”Œλ¦¬μΌ€μ΄μ…˜ μ’…λ£Œ
        - λΈŒλΌμš°μ € νƒ­ μ΅œμ†Œν™”
        """)

if __name__ == "__main__":
    main()