File size: 7,919 Bytes
d9930ab
e6a047c
a4c53e8
e6a047c
 
 
 
d9930ab
a4c53e8
43661ec
 
 
a4c53e8
 
 
e6a047c
 
 
d9930ab
e6a047c
d9930ab
e6a047c
 
 
 
d9930ab
e6a047c
 
d9930ab
a4c53e8
 
 
 
 
 
d9930ab
a4c53e8
 
e6a047c
 
 
 
 
 
07eef99
e6a047c
 
 
 
 
 
 
 
 
 
 
 
a4c53e8
e6a047c
d9930ab
e6a047c
 
d9930ab
e6a047c
 
 
 
 
 
d9930ab
a4c53e8
e6a047c
 
 
 
 
 
 
 
a4c53e8
 
e6a047c
 
 
 
 
a4c53e8
 
 
 
 
 
 
 
 
 
 
 
 
 
e6a047c
a4c53e8
 
 
 
 
 
 
 
 
 
 
 
e6a047c
a4c53e8
e6a047c
 
d9930ab
a4c53e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6a047c
 
a4c53e8
 
 
 
 
e6a047c
 
164d89a
 
 
 
 
 
 
a4e15a1
164d89a
 
 
 
a4c53e8
53b9bf9
 
cf2fb5f
a4c53e8
 
e6a047c
 
a4c53e8
47c5569
 
e6a047c
a4c53e8
 
47c5569
a4c53e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9930ab
e6a047c
 
 
 
 
d9930ab
43661ec
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import gradio as gr
import numpy as np
from PIL import Image, ImageDraw
import base64
from io import BytesIO
import re
import os

examples = [
    {"image": "./assets/example_desktop.png", "prompt": "switch off the wired connection"},
    {"image": "./assets/example_web.png", "prompt": "view all branches"},
    {"image": "./assets/example_mobile.jpg", "prompt": "share the screenshot"},
]


# Code from user
openai_api_key = os.environ["aria_ui_api_key"]
openai_api_base = os.environ["aria_ui_api_base"]

from openai import OpenAI  # Assuming the OpenAI client library is installed

client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)

models = client.models.list()
model = models.data[0].id

def encode_pil_image_to_base64(image: Image.Image) -> str:
    image = image.convert("RGB")
    buffered = BytesIO()
    image.save(buffered, format="JPEG")
    img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
    return img_str

def request_aria_ui(image: Image.Image, prompt: str) -> str:
    image_base64 = encode_pil_image_to_base64(image)
    chat_completion_from_url = client.chat.completions.create(
        messages=[{
            "role": "user",
            "content": [
                {
                    "type": "text",
                    "text": "<image>Given a GUI image, what are the relative (0-1000) pixel point coordinates for the element corresponding to the following instruction or description: " + prompt
                },
                {
                    "type": "image_url",
                    "image_url": {
                        "url": f"data:image/jpeg;base64,{image_base64}"
                    },
                },
            ],
        }],
        model=model,
        max_tokens=512,
        stop=["<|im_end|>"],
        extra_body={"split_image": True, "image_max_size": 980, "temperature": 0, "top_k": 1}
    )

    result = chat_completion_from_url.choices[0].message.content
    return result

def _extract_coords_from_response(response: str) -> tuple[int, int]:
    resp = response.replace("```", "").strip()
    numbers = re.findall(r'\d+', resp)
    if len(numbers) != 2:
        raise ValueError(f"Expected exactly 2 coordinates, found {len(numbers)} numbers in response: {response}")
    return int(numbers[0]), int(numbers[1])

def image_grounding(image: Image.Image, prompt: str) -> Image.Image:
    try:
        # Request processing from API
        response = request_aria_ui(image, prompt)
        
        # Extract normalized coordinates
        norm_coords = _extract_coords_from_response(response)
        
        # Convert normalized coordinates to absolute coordinates
        width, height = image.size
        long_side = max(width, height)
        abs_coords = (
            int(norm_coords[0] * width / 1000),  # Scale x-coordinate
            int(norm_coords[1] * height / 1000)  # Scale y-coordinate
        )
        
        # Load and prepare the click indicator image
        click_image = Image.open("assets/click.png")
        # Calculate adaptive size for click indicator
        # Make it proportional to the image width (e.g., 3% of image width)
        target_width = int(long_side * 0.03)  # 3% of image width
        aspect_ratio = click_image.width / click_image.height
        target_height = int(target_width / aspect_ratio)
        click_image = click_image.resize((target_width, target_height))
        
        # Calculate position to center the click image on the coordinates
        # Add a small offset downward (20% of click image height)
        # Calculate position to align the 30% point of the click image with the coordinates
        click_x = abs_coords[0] - int(click_image.width * 0.3)   # Align 30% from left
        click_y = abs_coords[1] - int(click_image.height * 0.3)  # Align 30% from top
        
        # Create output image and paste the click indicator
        output_image = image.copy()
        # Draw bounding box
        draw = ImageDraw.Draw(output_image)
        bbox = [
            click_x,                    # left
            click_y,                    # top
            click_x + click_image.width,  # right
            click_y + click_image.height  # bottom
        ]
        draw.rectangle(bbox, outline='red', width=int(click_image.width * 0.1))
        output_image.paste(click_image, (click_x, click_y), click_image)        
        return output_image
    
    except Exception as e:
        raise ValueError(f"An error occurred: {e}")

def resize_image_with_max_size(image: Image.Image, max_size: int = 1920) -> Image.Image:
    """Resize image to have a maximum dimension of max_size while maintaining aspect ratio."""
    width, height = image.size
    
    if width <= max_size and height <= max_size:
        return image
    
    if width > height:
        new_width = max_size
        new_height = int(height * (max_size / width))
    else:
        new_height = max_size
        new_width = int(width * (max_size / height))
    
    return image.resize((new_width, new_height), Image.Resampling.LANCZOS)

# Gradio app
def gradio_interface(input_image, prompt):
    print(input_image.size)
    input_image = resize_image_with_max_size(input_image)
    print(input_image.size)
    output_image = image_grounding(input_image, prompt)
    return output_image

with gr.Blocks() as demo:
    # with gr.Row(elem_classes="container"):
    #     gr.Image("https://raw.githubusercontent.com/AriaUI/Aria-UI/refs/heads/main/assets/logo_long.png", show_label=False, container=False, scale=1, elem_classes="logo", height=76)

    gr.HTML(
        """
        <div style="text-align: center; margin-bottom: 20px;">
            <div style="display: flex; justify-content: center;">
                <img src="https://raw.githubusercontent.com/AriaUI/Aria-UI/refs/heads/main/assets/logo_long.png" alt="Aria-UI" style="height: 76px; margin-bottom: 10px;"/>
            </div>
        </div>
        """
    )

    gr.Markdown("""| [πŸ€— Aria-UI Models](https://huggingface.co/Aria-UI/Aria-UI-base) β€’ [πŸ€— Aria-UI Dataset](https://huggingface.co/datasets/Aria-UI/Aria-UI_Data) β€’ [🌐 Project Page](https://ariaui.github.io) β€’ [πŸ“ Paper](https://arxiv.org/abs/2412.16256) |
|:---------------------------------------------------------------------------------------------------------:|""")
        
    gr.Markdown("# Aria-UI: Visual Grounding for GUI Instructions")
    gr.Markdown("πŸš€πŸš€ Upload a GUI image and enter a instruction. Aria-UI will try its best to ground the instruction to specific element in the image. 🎯🎯")
    
    with gr.Row():
        with gr.Column(scale=2):  # Make this column smaller
            image_input = gr.Image(type="pil", label="Upload GUI Image", height=600)
            prompt_input = gr.Textbox(label="Enter GUI Instruction")
            submit_button = gr.Button("Process")
            
        with gr.Column(scale=3):  # Make this column larger
            output_image = gr.Image(label="Grounding Result", height=500)  # Set specific height for larger display
        
    with gr.Column(scale=2):
        # Move examples here and make them vertical
        gr.Examples(
            examples=[
                [
                    example["image"],
                    example["prompt"]
                ]
                for example in examples
            ],
            inputs=[image_input, prompt_input],
            outputs=[output_image],
            fn=gradio_interface,
            cache_examples=False,
            label="Example Tasks",  # Add label for better organization
            examples_per_page=5  # Control number of examples shown at once
        )

    submit_button.click(
        fn=gradio_interface,
        inputs=[image_input, prompt_input],
        outputs=[output_image]
    )

demo.launch(
    server_name="0.0.0.0",
    server_port=7860,
    ssr_mode=False,
    debug=True,
)