File size: 11,902 Bytes
0745795 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
# Deployment Architecture & Infrastructure
## ποΈ Current Architecture
### HuggingFace Spaces Deployment
**Platform:** HuggingFace Spaces
**Runtime:** Python 3.9+ with FastAPI
**URL:** `https://sematech-sema-api.hf.space`
**Auto-deployment:** Connected to Git repository
### System Components
```
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β Sema Translation API β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β FastAPI Application Server β
β βββ API Endpoints (v1) β
β βββ Request Middleware (Rate Limiting, Logging) β
β βββ Authentication (Future) β
β βββ Response Middleware (CORS, Headers) β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β Translation Services β
β βββ CTranslate2 Translation Engine β
β βββ SentencePiece Tokenizer β
β βββ FastText Language Detection β
β βββ Language Database (FLORES-200) β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β Custom HuggingFace Models β
β βββ sematech/sema-utils Repository β
β βββ NLLB-200 3.3B (CTranslate2 Optimized) β
β βββ FastText LID.176 Model β
β βββ SentencePiece Tokenizer β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β Monitoring & Observability β
β βββ Prometheus Metrics β
β βββ Structured Logging (JSON) β
β βββ Request Tracking (UUID) β
β βββ Performance Timing β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
```
### Model Storage & Caching
**HuggingFace Hub Integration:**
```python
# Model loading from unified repository
model_path = snapshot_download(
repo_id="sematech/sema-utils",
cache_dir="/app/models",
local_files_only=False
)
# Local caching strategy
CACHE_STRUCTURE = {
"/app/models/": {
"sematech--sema-utils/": {
"translation/": {
"nllb-200-3.3B-ct2/": "CTranslate2 model files",
"tokenizer/": "SentencePiece tokenizer"
},
"language_detection/": {
"lid.176.bin": "FastText model"
}
}
}
}
```
## π Deployment Process
### 1. HuggingFace Spaces Configuration
**Space Configuration (`README.md`):**
```yaml
---
title: Sema Translation API
emoji: π
colorFrom: blue
colorTo: green
sdk: docker
pinned: false
license: mit
app_port: 8000
---
```
**Dockerfile:**
```dockerfile
FROM python:3.9-slim
WORKDIR /app
# Install system dependencies
RUN apt-get update && apt-get install -y \
build-essential \
&& rm -rf /var/lib/apt/lists/*
# Copy requirements and install Python dependencies
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
# Copy application code
COPY . .
# Expose port
EXPOSE 8000
# Start application
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "8000"]
```
### 2. Environment Configuration
**Environment Variables:**
```bash
# Application settings
APP_NAME="Sema Translation API"
APP_VERSION="2.0.0"
ENVIRONMENT="production"
# Model settings
MODEL_CACHE_DIR="/app/models"
HF_HOME="/app/models"
# API settings
MAX_CHARACTERS=5000
RATE_LIMIT_PER_MINUTE=60
# Monitoring
ENABLE_METRICS=true
LOG_LEVEL="INFO"
# HuggingFace Hub
HF_TOKEN="your_token_here" # Optional for private models
```
### 3. Startup Process
**Application Initialization:**
```python
@app.on_event("startup")
async def startup_event():
"""Initialize application on startup"""
print("[INFO] Starting Sema Translation API v2.0.0")
print("[INFO] Loading translation models...")
try:
# Load models from HuggingFace Hub
load_models()
# Initialize metrics
if settings.enable_metrics:
setup_prometheus_metrics()
# Setup logging
configure_structured_logging()
print("[SUCCESS] API started successfully")
print(f"[CONFIG] Environment: {settings.environment}")
print(f"[ENDPOINT] Documentation: / (Swagger UI)")
print(f"[ENDPOINT] API v1: /api/v1/")
except Exception as e:
print(f"[ERROR] Startup failed: {e}")
raise
```
## π Performance Characteristics
### Resource Requirements
**Memory Usage:**
- **Model Loading**: ~3.2GB RAM
- **Per Request**: 50-100MB additional
- **Concurrent Requests**: Linear scaling
- **Peak Usage**: ~4-5GB with multiple concurrent requests
**CPU Usage:**
- **Model Inference**: CPU-intensive (CTranslate2 optimized)
- **Language Detection**: Minimal CPU usage
- **Request Processing**: Low overhead
- **Recommended**: 4+ CPU cores for production
**Storage:**
- **Model Files**: ~2.8GB total
- **Application Code**: ~50MB
- **Logs**: Variable (recommend log rotation)
- **Cache**: Automatic HuggingFace Hub caching
### Performance Benchmarks
**Translation Speed:**
```
Text Length | Inference Time | Total Response Time
----------------|----------------|--------------------
< 50 chars | 0.2-0.5s | 0.3-0.7s
50-200 chars | 0.5-1.2s | 0.7-1.5s
200-500 chars | 1.2-2.5s | 1.5-3.0s
500+ chars | 2.5-5.0s | 3.0-6.0s
```
**Language Detection Speed:**
```
Text Length | Detection Time
----------------|---------------
Any length | 0.01-0.05s
```
**Concurrent Request Handling:**
```
Concurrent Users | Response Time (95th percentile)
-----------------|--------------------------------
1-5 users | < 2 seconds
5-10 users | < 3 seconds
10-20 users | < 5 seconds
20+ users | May require scaling
```
## π§ Monitoring & Observability
### Prometheus Metrics
**Available Metrics:**
```python
# Request metrics
sema_requests_total{endpoint, status}
sema_request_duration_seconds{endpoint}
# Translation metrics
sema_translations_total{source_lang, target_lang}
sema_characters_translated_total
sema_translation_duration_seconds{source_lang, target_lang}
# Language detection metrics
sema_language_detections_total{detected_lang}
sema_detection_duration_seconds
# Error metrics
sema_errors_total{error_type, endpoint}
# System metrics
sema_model_load_time_seconds
sema_memory_usage_bytes
```
**Metrics Endpoint:**
```bash
curl https://sematech-sema-api.hf.space/metrics
```
### Structured Logging
**Log Format:**
```json
{
"timestamp": "2024-06-21T14:30:25.123Z",
"level": "INFO",
"event": "translation_request",
"request_id": "550e8400-e29b-41d4-a716-446655440000",
"source_language": "swh_Latn",
"target_language": "eng_Latn",
"character_count": 17,
"inference_time": 0.234,
"total_time": 1.234,
"client_ip": "192.168.1.1"
}
```
### Health Monitoring
**Health Check Endpoints:**
```bash
# Basic status
curl https://sematech-sema-api.hf.space/status
# Detailed health
curl https://sematech-sema-api.hf.space/health
# Model validation
curl https://sematech-sema-api.hf.space/health | jq '.models_loaded'
```
## π CI/CD Pipeline
### Automated Deployment
**Git Integration:**
1. **Code Push**: Push to main branch
2. **Auto-Build**: HuggingFace Spaces builds Docker image
3. **Model Download**: Automatic model download from `sematech/sema-utils`
4. **Health Check**: Automatic health validation
5. **Live Deployment**: Zero-downtime deployment
**Deployment Validation:**
```bash
# Automated health check after deployment
curl -f https://sematech-sema-api.hf.space/health || exit 1
# Test translation functionality
curl -X POST https://sematech-sema-api.hf.space/api/v1/translate \
-H "Content-Type: application/json" \
-d '{"text": "Hello", "target_language": "swh_Latn"}' || exit 1
```
### Model Updates
**Model Versioning Strategy:**
```python
# Check for model updates
def check_model_updates():
"""Check if models need updating"""
try:
repo_info = api.repo_info("sematech/sema-utils")
local_commit = get_local_commit_hash()
if local_commit != repo_info.sha:
logger.info("model_update_available")
return True
return False
except Exception as e:
logger.error("update_check_failed", error=str(e))
return False
# Graceful model reloading
async def reload_models():
"""Reload models without downtime"""
global translator, tokenizer, language_detector
# Download updated models
new_model_path = download_models()
# Load new models
new_translator = load_translation_model(new_model_path)
new_tokenizer = load_tokenizer(new_model_path)
new_detector = load_detection_model(new_model_path)
# Atomic swap
translator = new_translator
tokenizer = new_tokenizer
language_detector = new_detector
logger.info("models_reloaded_successfully")
```
## π Security Considerations
### Current Security Measures
**Input Validation:**
- Pydantic schema validation
- Character length limits
- Content type validation
- Request size limits
**Rate Limiting:**
- IP-based rate limiting (60 req/min)
- Sliding window implementation
- Graceful degradation
**CORS Configuration:**
```python
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Configure for production
allow_credentials=True,
allow_methods=["GET", "POST"],
allow_headers=["*"],
)
```
### Future Security Enhancements
**Authentication & Authorization:**
- API key management
- JWT token validation
- Role-based access control
- Usage quotas per user
**Enhanced Security:**
- Request signing
- IP whitelisting
- DDoS protection
- Input sanitization
## π Scaling Considerations
### Horizontal Scaling
**Load Balancing Strategy:**
```nginx
upstream sema_api {
server sema-api-1.hf.space;
server sema-api-2.hf.space;
server sema-api-3.hf.space;
}
server {
listen 80;
location / {
proxy_pass http://sema_api;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
}
}
```
**Auto-scaling Triggers:**
- CPU usage > 80%
- Memory usage > 85%
- Response time > 5 seconds
- Queue length > 10 requests
### Performance Optimization
**Caching Strategy:**
- Redis for translation caching
- CDN for static content
- Model result caching
- Language metadata caching
**Database Integration:**
- PostgreSQL for user data
- Analytics database for metrics
- Read replicas for scaling
- Connection pooling
This architecture provides a solid foundation for scaling the Sema API to handle enterprise-level traffic while maintaining high performance and reliability.
|