File size: 8,965 Bytes
0745795 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
# Sema Translation API - Complete Documentation
Welcome to the comprehensive documentation for the Sema Translation API - an enterprise-grade translation service supporting 200+ languages with custom HuggingFace models and a focus on African languages.
## ๐ Documentation Overview
This documentation covers all aspects of the Sema Translation API, from custom model implementation to advanced deployment scenarios and future application ideas.
### ๐ Core Documentation
#### **[Custom Models Implementation](CUSTOM_MODELS_IMPLEMENTATION.md)**
**Essential Reading** - Detailed documentation of how we implemented custom HuggingFace models:
- Unified `sematech/sema-utils` repository structure
- CTranslate2 optimization for 2-4x faster inference
- Model loading pipeline and caching strategy
- Performance benchmarks and monitoring
- Model update and versioning process
#### **[API Capabilities](API_CAPABILITIES.md)**
Complete overview of enhanced API features:
- 55+ African languages (updated from 23)
- Server-side performance timing
- Language detection with confidence scores
- Comprehensive language metadata system
#### **[Future Considerations](FUTURE_CONSIDERATIONS.md)**
Roadmap and application ideas:
- Authentication & user management with Supabase
- Database integration and caching strategies
- Document translation and real-time streaming
- Innovative application ideas (chatbots, education, government services)
#### **[Deployment Architecture](DEPLOYMENT_ARCHITECTURE.md)**
Infrastructure and deployment details:
- HuggingFace Spaces deployment process
- Performance characteristics and resource requirements
- Monitoring with Prometheus and structured logging
- CI/CD pipeline and scaling considerations
### ๐ Additional Documentation
#### **[Project Overview](PROJECT_OVERVIEW.md)**
High-level project introduction and goals
#### **[API Reference](API_REFERENCE.md)**
Complete endpoint documentation with examples
## ๐ Key Achievements & Features
### Custom HuggingFace Models Integration
- **Unified Repository**: `sematech/sema-utils` containing all models
- **Optimized Performance**: CTranslate2 INT8 quantization (75% size reduction)
- **Automatic Updates**: HuggingFace Hub integration with version management
- **Enterprise Caching**: Intelligent model caching and loading strategies
### Enhanced African Language Support
- **55+ African Languages**: Complete FLORES-200 African language coverage
- **Regional Distribution**: West, East, Southern, Central, and North Africa
- **Multiple Scripts**: Latin, Arabic, Ethiopic, Tifinagh support
- **Cultural Context**: Native names and regional information
### Performance & Monitoring
- **Server-Side Timing**: Request performance tracking in headers and responses
- **Prometheus Metrics**: Comprehensive monitoring and analytics
- **Request Tracking**: Unique request IDs for debugging
- **Health Monitoring**: System status and model availability checks
## ๐ง Technical Implementation Highlights
### Model Architecture
```
Custom HuggingFace Models (sematech/sema-utils)
โโโ Translation: NLLB-200 3.3B (CTranslate2 optimized)
โโโ Language Detection: FastText LID.176
โโโ Tokenization: SentencePiece
โโโ Language Database: FLORES-200 complete
```
### Performance Metrics
- **Model Size**: 2.5GB (optimized from 6.6GB)
- **Inference Speed**: 0.2-2.5 seconds depending on text length
- **Memory Usage**: ~3.2GB for models, 50-100MB per request
- **Language Detection**: 0.01-0.05 seconds with 99%+ accuracy
### API Enhancements
- **Request Timing**: Server-side performance measurement
- **Language Metadata**: Complete language information system
- **Error Handling**: Comprehensive validation and error responses
- **Rate Limiting**: 60 requests/minute with graceful degradation
## ๐ Quick Start Examples
### Basic Translation with Timing
```bash
curl -v -X POST "https://sematech-sema-api.hf.space/api/v1/translate" \
-H "Content-Type: application/json" \
-d '{"text": "Habari ya asubuhi", "target_language": "eng_Latn"}'
# Response includes timing information:
# X-Response-Time: 1.234s
# X-Request-ID: 550e8400-e29b-41d4-a716-446655440000
```
### African Languages Discovery
```bash
# Get all 55+ African languages
curl "https://sematech-sema-api.hf.space/api/v1/languages/african"
# Search for specific African languages
curl "https://sematech-sema-api.hf.space/api/v1/languages/search?q=Akan"
curl "https://sematech-sema-api.hf.space/api/v1/languages/search?q=Bambara"
```
### Language Detection with Confidence
```bash
curl -X POST "https://sematech-sema-api.hf.space/api/v1/detect-language" \
-H "Content-Type: application/json" \
-d '{"text": "Habari ya asubuhi"}'
# Returns: detected language, confidence score, timing information
```
## ๐ฏ Application Use Cases
### 1. Multilingual Chatbot Implementation
```python
async def process_user_input(user_text):
# 1. Detect language
detection = await detect_language(user_text)
# 2. Decide processing flow
if detection.is_english:
response = await llm_chat(user_text)
else:
# Translate โ Process โ Translate back
english_input = await translate(user_text, "eng_Latn")
english_response = await llm_chat(english_input)
response = await translate(english_response, detection.detected_language)
return response
```
### 2. African News Platform
- Aggregate news from multiple African countries
- Translate between African languages
- Provide summaries in user's preferred language
### 3. Educational Platform
- Interactive language learning with African languages
- Cultural context and pronunciation guides
- Progress tracking across multiple languages
### 4. Government Services
- Multilingual official document translation
- Emergency notifications in local languages
- Citizen services in preferred languages
## ๐ API Statistics & Metrics
### Language Coverage
- **Total Languages**: 200+ (FLORES-200 complete)
- **African Languages**: 55+ (updated from 23)
- **Writing Scripts**: Latin, Arabic, Ethiopic, Tifinagh, Cyrillic, Han, etc.
- **Geographic Regions**: Comprehensive global coverage
### Performance Benchmarks
- **Translation Speed**: 0.2-2.5s depending on text length
- **Language Detection**: 0.01-0.05s with 99%+ accuracy
- **Model Efficiency**: 75% size reduction with maintained quality
- **Concurrent Handling**: Linear scaling with available resources
### Quality Metrics
- **BLEU Scores**: Industry-standard translation quality
- **African Languages**: Specialized cultural context preservation
- **Uptime**: 99.9% target availability
- **Error Rate**: <1% under normal load
## ๐ฎ Future Roadmap
### Immediate (3-6 months)
- User authentication and usage tracking
- Database integration with PostgreSQL
- Redis caching for improved performance
- Advanced monitoring dashboards
### Medium-term (6-12 months)
- Document translation with formatting preservation
- Real-time translation streaming via WebSocket
- Domain-specific models (medical, legal, technical)
- Mobile SDK development
### Long-term (1-2 years)
- AI-powered translation ecosystem
- Enterprise integration platform
- African language research contributions
- Voice-to-voice translation capabilities
## ๐ ๏ธ Development & Deployment
### Local Development
```bash
# Clone and setup
git clone https://github.com/lewiskimaru/sema.git
cd sema/backend/sema-api
# Install dependencies
pip install -r requirements.txt
# Run locally
uvicorn app.main:app --reload --host 0.0.0.0 --port 8000
```
### Testing
```bash
# Run comprehensive tests
python tests/test_african_languages_update.py
python tests/test_performance_timing.py
python tests/simple_test.py
```
### Deployment
- **Platform**: HuggingFace Spaces
- **Auto-deployment**: Git integration
- **Model Updates**: Automatic from `sematech/sema-utils`
- **Monitoring**: Prometheus metrics and health checks
## ๐ Support & Resources
### Documentation Links
- **Live API**: https://sematech-sema-api.hf.space
- **Interactive Docs**: https://sematech-sema-api.hf.space/ (Swagger UI)
- **Health Status**: https://sematech-sema-api.hf.space/health
- **Metrics**: https://sematech-sema-api.hf.space/metrics
### Model Repository
- **HuggingFace**: https://huggingface.co/sematech/sema-utils
- **Model Documentation**: Comprehensive model usage and optimization guides
- **Version History**: Track model updates and improvements
### Community & Support
- **GitHub Repository**: Complete source code and issue tracking
- **Model Contributions**: Community-driven improvements
- **Research Collaboration**: Academic partnerships for African language research
---
**The Sema Translation API represents a significant advancement in African language technology, combining custom HuggingFace models with enterprise-grade infrastructure to serve diverse global communities.**
*Documentation last updated: June 2024 | API Version: 2.0.0*
|