File size: 4,016 Bytes
937c29e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# Deployment Instructions for HuggingFace Spaces

## Files Ready for Deployment

Your HuggingFace Space needs these files (all created and ready):

1. **`sema_translation_api.py`** - Main API application
2. **`requirements.txt`** - Python dependencies
3. **`Dockerfile`** - Container configuration
4. **`README.md`** - Space documentation and metadata

## Deployment Steps

### Option 1: Using Git (Recommended)

1. **Navigate to your existing HF Space repository:**
   ```bash
   cd backend/sema-api
   ```

2. **The files are ready to deploy as-is:**
   ```bash
   # All files are ready:
   # - sema_translation_api.py (main application)
   # - requirements.txt
   # - Dockerfile
   # - README.md
   ```

3. **Commit and push to HuggingFace:**
   ```bash
   git add .
   git commit -m "Update to use consolidated sema-utils models with new API"
   git push origin main
   ```

### Option 2: Using HuggingFace Web Interface

1. Go to your Space: `https://huggingface.co/spaces/sematech/sema-api`
2. Click on "Files" tab
3. Upload/replace these files:
   - Upload `sema_translation_api.py`
   - Replace `requirements.txt`
   - Replace `Dockerfile`
   - Replace `README.md`

## What Happens After Deployment

1. **Automatic Build**: HF Spaces will automatically start building your Docker container
2. **Model Download**: During build, the app will download models from `sematech/sema-utils`:
   - `spm.model` (SentencePiece tokenizer)
   - `lid218e.bin` (Language detection)
   - `translation_models/sematrans-3.3B/` (Translation model)
3. **API Startup**: Once built, your API will be available at the Space URL

## Testing Your Deployed API

### 1. Health Check
```bash
curl https://sematech-sema-api.hf.space/
```

### 2. Translation with Auto-Detection
```bash
curl -X POST "https://sematech-sema-api.hf.space/translate" \
  -H "Content-Type: application/json" \
  -d '{
    "text": "Habari ya asubuhi",
    "target_language": "eng_Latn"
  }'
```

### 3. Translation with Source Language
```bash
curl -X POST "https://sematech-sema-api.hf.space/translate" \
  -H "Content-Type: application/json" \
  -d '{
    "text": "WΔ© mwega?",
    "source_language": "kik_Latn",
    "target_language": "eng_Latn"
  }'
```

### 4. Interactive Documentation
Visit: `https://sematech-sema-api.hf.space/docs`

## Expected Build Time

- **First build**: 10-15 minutes (downloading models ~5GB)
- **Subsequent builds**: 2-5 minutes (models cached)

## Monitoring the Build

1. Go to your Space page
2. Click on "Logs" tab to see build progress
3. Look for these key messages:
   - "πŸ“₯ Downloading models from sematech/sema-utils..."
   - "βœ… All models loaded successfully!"
   - "πŸŽ‰ API started successfully!"

## Troubleshooting

### If Build Fails:
1. Check the logs for specific error messages
2. Common issues:
   - Model download timeout (retry build)
   - Memory issues (models are large)
   - Network connectivity issues

### If API Doesn't Respond:
1. Check if the Space is "Running" (green status)
2. Try the health check endpoint first
3. Check logs for runtime errors

## Key Improvements in This Version

1. **Consolidated Models**: Uses your unified `sema-utils` repository
2. **Better Error Handling**: Clear error messages and validation
3. **Performance Monitoring**: Tracks inference time
4. **Clean API Design**: Follows FastAPI best practices
5. **Automatic Documentation**: Built-in OpenAPI docs
6. **Flexible Input**: Auto-detection or manual source language

## Next Steps After Deployment

1. **Test the API** with various language pairs
2. **Monitor performance** and response times
3. **Update documentation** with your actual Space URL
4. **Consider adding rate limiting** for production use
5. **Add authentication** if needed for private use

## Important Note About File Structure

The Dockerfile correctly references `sema_translation_api:app` (not `app:app`) since our main file is `sema_translation_api.py`. No need to rename files - deploy as-is!

---

Your new API is ready to deploy! πŸš€