# Sema Translation API - Architecture Overview ## 🏗️ Project Structure This FastAPI application follows industry best practices for maintainable, scalable APIs: ### Directory Structure ``` app/ ├── main.py # Application entry point & FastAPI instance ├── api/v1/endpoints.py # API route handlers (versioned) ├── core/ # Core configuration & setup │ ├── config.py # Settings management │ ├── logging.py # Structured logging setup │ └── metrics.py # Prometheus metrics definitions ├── middleware/ # Custom middleware │ └── request_middleware.py # Request tracking & metrics ├── models/schemas.py # Pydantic data models ├── services/translation.py # Business logic & model management └── utils/helpers.py # Utility functions ``` ## 🔧 Design Principles ### 1. Separation of Concerns - **API Layer**: Route definitions and request/response handling - **Service Layer**: Business logic and model operations - **Core Layer**: Configuration, logging, and metrics - **Models Layer**: Data validation and serialization ### 2. Dependency Injection - Settings injected via Pydantic Settings - Services accessed through proper imports - Middleware applied declaratively ### 3. Configuration Management - Environment-based configuration - Type-safe settings with Pydantic - Centralized configuration in `core/config.py` ### 4. Observability - Structured JSON logging with structlog - Prometheus metrics for monitoring - Request tracking with unique IDs - Health check endpoints ## 🚀 Key Features ### Enterprise-Grade Features - **Rate Limiting**: IP-based rate limiting with SlowAPI - **Request Tracking**: Unique request IDs for debugging - **Metrics Collection**: Prometheus metrics for monitoring - **Structured Logging**: JSON logs for easy parsing - **Health Checks**: Comprehensive health monitoring ### API Design - **Versioned Routes**: `/api/v1/` for future compatibility - **OpenAPI Documentation**: Auto-generated Swagger UI - **Type Safety**: Full Pydantic validation - **Error Handling**: Graceful error responses ### Performance - **Async/Await**: Full asynchronous request handling - **Model Caching**: Models loaded once at startup - **Efficient Translation**: CTranslate2 optimization ## 🔒 Security (Testing Phase) ### Current State - Authentication **removed** for testing phase - Rate limiting active (60 req/min per IP) - Input validation with Pydantic - CORS configured for development ### Future Integration Points - Supabase authentication ready - User tracking infrastructure in place - Usage analytics for billing prepared ## 📊 Monitoring & Observability ### Metrics Available - Request count by endpoint and status - Request duration histograms - Translation count by language pair - Character count tracking - Error count by type ### Logging - Structured JSON logs - Request/response tracking - Translation event logging - Error logging with context ## 🔄 Development Workflow ### Local Development ```bash cd backend/sema-api pip install -r requirements.txt uvicorn app.main:app --reload ``` ### Docker Development ```bash docker build -t sema-api . docker run -p 8000:8000 sema-api ``` ### Testing - Health check: `GET /health` - Documentation: `GET /docs` - Metrics: `GET /metrics` - Translation: `POST /translate` ## 🎯 Future Enhancements ### Authentication Integration - Supabase JWT validation - User-based rate limiting - API key authentication ### Scaling Considerations - Database integration for usage tracking - Redis caching for performance - Load balancer compatibility - Horizontal scaling support ### Monitoring Enhancements - Grafana dashboards - Alerting rules - Performance profiling - Usage analytics ## 📝 Maintenance ### Code Organization Benefits - **Testability**: Each component can be tested independently - **Maintainability**: Clear separation of concerns - **Scalability**: Easy to add new features and endpoints - **Debugging**: Structured logging and request tracking - **Documentation**: Self-documenting code structure ### Adding New Features 1. **New Endpoints**: Add to `api/v1/endpoints.py` 2. **Business Logic**: Add to appropriate service in `services/` 3. **Data Models**: Add to `models/schemas.py` 4. **Configuration**: Add to `core/config.py` 5. **Middleware**: Add to `middleware/` This architecture provides a solid foundation for a production-ready translation API that can scale and evolve with your needs.