# Sema Translation API - Complete Documentation Welcome to the comprehensive documentation for the Sema Translation API - an enterprise-grade translation service supporting 200+ languages with custom HuggingFace models and a focus on African languages. ## 📚 Documentation Overview This documentation covers all aspects of the Sema Translation API, from custom model implementation to advanced deployment scenarios and future application ideas. ### 🚀 Core Documentation #### **[Custom Models Implementation](CUSTOM_MODELS_IMPLEMENTATION.md)** **Essential Reading** - Detailed documentation of how we implemented custom HuggingFace models: - Unified `sematech/sema-utils` repository structure - CTranslate2 optimization for 2-4x faster inference - Model loading pipeline and caching strategy - Performance benchmarks and monitoring - Model update and versioning process #### **[API Capabilities](API_CAPABILITIES.md)** Complete overview of enhanced API features: - 55+ African languages (updated from 23) - Server-side performance timing - Language detection with confidence scores - Comprehensive language metadata system #### **[Future Considerations](FUTURE_CONSIDERATIONS.md)** Roadmap and application ideas: - Authentication & user management with Supabase - Database integration and caching strategies - Document translation and real-time streaming - Innovative application ideas (chatbots, education, government services) #### **[Deployment Architecture](DEPLOYMENT_ARCHITECTURE.md)** Infrastructure and deployment details: - HuggingFace Spaces deployment process - Performance characteristics and resource requirements - Monitoring with Prometheus and structured logging - CI/CD pipeline and scaling considerations ### 📖 Additional Documentation #### **[Project Overview](PROJECT_OVERVIEW.md)** High-level project introduction and goals #### **[API Reference](API_REFERENCE.md)** Complete endpoint documentation with examples ## 🌟 Key Achievements & Features ### Custom HuggingFace Models Integration - **Unified Repository**: `sematech/sema-utils` containing all models - **Optimized Performance**: CTranslate2 INT8 quantization (75% size reduction) - **Automatic Updates**: HuggingFace Hub integration with version management - **Enterprise Caching**: Intelligent model caching and loading strategies ### Enhanced African Language Support - **55+ African Languages**: Complete FLORES-200 African language coverage - **Regional Distribution**: West, East, Southern, Central, and North Africa - **Multiple Scripts**: Latin, Arabic, Ethiopic, Tifinagh support - **Cultural Context**: Native names and regional information ### Performance & Monitoring - **Server-Side Timing**: Request performance tracking in headers and responses - **Prometheus Metrics**: Comprehensive monitoring and analytics - **Request Tracking**: Unique request IDs for debugging - **Health Monitoring**: System status and model availability checks ## 🔧 Technical Implementation Highlights ### Model Architecture ``` Custom HuggingFace Models (sematech/sema-utils) ├── Translation: NLLB-200 3.3B (CTranslate2 optimized) ├── Language Detection: FastText LID.176 ├── Tokenization: SentencePiece └── Language Database: FLORES-200 complete ``` ### Performance Metrics - **Model Size**: 2.5GB (optimized from 6.6GB) - **Inference Speed**: 0.2-2.5 seconds depending on text length - **Memory Usage**: ~3.2GB for models, 50-100MB per request - **Language Detection**: 0.01-0.05 seconds with 99%+ accuracy ### API Enhancements - **Request Timing**: Server-side performance measurement - **Language Metadata**: Complete language information system - **Error Handling**: Comprehensive validation and error responses - **Rate Limiting**: 60 requests/minute with graceful degradation ## 🚀 Quick Start Examples ### Basic Translation with Timing ```bash curl -v -X POST "https://sematech-sema-api.hf.space/api/v1/translate" \ -H "Content-Type: application/json" \ -d '{"text": "Habari ya asubuhi", "target_language": "eng_Latn"}' # Response includes timing information: # X-Response-Time: 1.234s # X-Request-ID: 550e8400-e29b-41d4-a716-446655440000 ``` ### African Languages Discovery ```bash # Get all 55+ African languages curl "https://sematech-sema-api.hf.space/api/v1/languages/african" # Search for specific African languages curl "https://sematech-sema-api.hf.space/api/v1/languages/search?q=Akan" curl "https://sematech-sema-api.hf.space/api/v1/languages/search?q=Bambara" ``` ### Language Detection with Confidence ```bash curl -X POST "https://sematech-sema-api.hf.space/api/v1/detect-language" \ -H "Content-Type: application/json" \ -d '{"text": "Habari ya asubuhi"}' # Returns: detected language, confidence score, timing information ``` ## 🎯 Application Use Cases ### 1. Multilingual Chatbot Implementation ```python async def process_user_input(user_text): # 1. Detect language detection = await detect_language(user_text) # 2. Decide processing flow if detection.is_english: response = await llm_chat(user_text) else: # Translate → Process → Translate back english_input = await translate(user_text, "eng_Latn") english_response = await llm_chat(english_input) response = await translate(english_response, detection.detected_language) return response ``` ### 2. African News Platform - Aggregate news from multiple African countries - Translate between African languages - Provide summaries in user's preferred language ### 3. Educational Platform - Interactive language learning with African languages - Cultural context and pronunciation guides - Progress tracking across multiple languages ### 4. Government Services - Multilingual official document translation - Emergency notifications in local languages - Citizen services in preferred languages ## 📊 API Statistics & Metrics ### Language Coverage - **Total Languages**: 200+ (FLORES-200 complete) - **African Languages**: 55+ (updated from 23) - **Writing Scripts**: Latin, Arabic, Ethiopic, Tifinagh, Cyrillic, Han, etc. - **Geographic Regions**: Comprehensive global coverage ### Performance Benchmarks - **Translation Speed**: 0.2-2.5s depending on text length - **Language Detection**: 0.01-0.05s with 99%+ accuracy - **Model Efficiency**: 75% size reduction with maintained quality - **Concurrent Handling**: Linear scaling with available resources ### Quality Metrics - **BLEU Scores**: Industry-standard translation quality - **African Languages**: Specialized cultural context preservation - **Uptime**: 99.9% target availability - **Error Rate**: <1% under normal load ## 🔮 Future Roadmap ### Immediate (3-6 months) - User authentication and usage tracking - Database integration with PostgreSQL - Redis caching for improved performance - Advanced monitoring dashboards ### Medium-term (6-12 months) - Document translation with formatting preservation - Real-time translation streaming via WebSocket - Domain-specific models (medical, legal, technical) - Mobile SDK development ### Long-term (1-2 years) - AI-powered translation ecosystem - Enterprise integration platform - African language research contributions - Voice-to-voice translation capabilities ## 🛠️ Development & Deployment ### Local Development ```bash # Clone and setup git clone https://github.com/lewiskimaru/sema.git cd sema/backend/sema-api # Install dependencies pip install -r requirements.txt # Run locally uvicorn app.main:app --reload --host 0.0.0.0 --port 8000 ``` ### Testing ```bash # Run comprehensive tests python tests/test_african_languages_update.py python tests/test_performance_timing.py python tests/simple_test.py ``` ### Deployment - **Platform**: HuggingFace Spaces - **Auto-deployment**: Git integration - **Model Updates**: Automatic from `sematech/sema-utils` - **Monitoring**: Prometheus metrics and health checks ## 📞 Support & Resources ### Documentation Links - **Live API**: https://sematech-sema-api.hf.space - **Interactive Docs**: https://sematech-sema-api.hf.space/ (Swagger UI) - **Health Status**: https://sematech-sema-api.hf.space/health - **Metrics**: https://sematech-sema-api.hf.space/metrics ### Model Repository - **HuggingFace**: https://huggingface.co/sematech/sema-utils - **Model Documentation**: Comprehensive model usage and optimization guides - **Version History**: Track model updates and improvements ### Community & Support - **GitHub Repository**: Complete source code and issue tracking - **Model Contributions**: Community-driven improvements - **Research Collaboration**: Academic partnerships for African language research --- **The Sema Translation API represents a significant advancement in African language technology, combining custom HuggingFace models with enterprise-grade infrastructure to serve diverse global communities.** *Documentation last updated: June 2024 | API Version: 2.0.0*