Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,322 +1,59 @@
|
|
| 1 |
import torch
|
| 2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
import json
|
| 4 |
-
import gradio as gr
|
| 5 |
-
from typing import Optional, Dict, Any
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
try:
|
| 29 |
-
self.model = AutoModelForCausalLM.from_pretrained(
|
| 30 |
-
model_name,
|
| 31 |
-
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
|
| 32 |
-
device_map="auto" if self.device == "cuda" else None,
|
| 33 |
-
trust_remote_code=True
|
| 34 |
-
)
|
| 35 |
-
except Exception as e:
|
| 36 |
-
print(f"Error loading model: {e}")
|
| 37 |
-
raise
|
| 38 |
-
|
| 39 |
-
# Set padding token if not exists
|
| 40 |
-
if self.tokenizer.pad_token is None:
|
| 41 |
-
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 42 |
-
|
| 43 |
-
print("Model loaded successfully!")
|
| 44 |
-
|
| 45 |
-
def generate_n8n_workflow(
|
| 46 |
-
self,
|
| 47 |
-
prompt: str,
|
| 48 |
-
max_length: int = 2048,
|
| 49 |
-
temperature: float = 0.7,
|
| 50 |
-
top_p: float = 0.9,
|
| 51 |
-
do_sample: bool = True
|
| 52 |
-
) -> str:
|
| 53 |
-
"""
|
| 54 |
-
Generate n8n workflow JSON from a natural language prompt.
|
| 55 |
-
|
| 56 |
-
Args:
|
| 57 |
-
prompt: Natural language description of the workflow
|
| 58 |
-
max_length: Maximum tokens to generate
|
| 59 |
-
temperature: Sampling temperature
|
| 60 |
-
top_p: Top-p sampling parameter
|
| 61 |
-
do_sample: Whether to use sampling
|
| 62 |
-
|
| 63 |
-
Returns:
|
| 64 |
-
Generated n8n workflow JSON as string
|
| 65 |
-
"""
|
| 66 |
-
# Format prompt for the model
|
| 67 |
-
formatted_prompt = f"Create an n8n workflow for: {prompt}\n\nWorkflow JSON:"
|
| 68 |
-
|
| 69 |
-
# Tokenize input
|
| 70 |
-
inputs = self.tokenizer(
|
| 71 |
-
formatted_prompt,
|
| 72 |
-
return_tensors="pt",
|
| 73 |
-
truncation=True,
|
| 74 |
-
max_length=512
|
| 75 |
-
).to(self.device)
|
| 76 |
-
|
| 77 |
-
# Generate response
|
| 78 |
-
with torch.no_grad():
|
| 79 |
-
outputs = self.model.generate(
|
| 80 |
-
**inputs,
|
| 81 |
-
max_length=max_length,
|
| 82 |
-
temperature=temperature,
|
| 83 |
-
top_p=top_p,
|
| 84 |
-
do_sample=do_sample,
|
| 85 |
-
pad_token_id=self.tokenizer.eos_token_id,
|
| 86 |
-
eos_token_id=self.tokenizer.eos_token_id,
|
| 87 |
-
repetition_penalty=1.1
|
| 88 |
-
)
|
| 89 |
-
|
| 90 |
-
# Decode and clean output
|
| 91 |
-
generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 92 |
-
|
| 93 |
-
# Extract JSON part (assuming it starts after the prompt)
|
| 94 |
-
json_start = generated_text.find('{')
|
| 95 |
-
if json_start != -1:
|
| 96 |
-
workflow_json = generated_text[json_start:]
|
| 97 |
-
|
| 98 |
-
# Try to validate JSON
|
| 99 |
-
try:
|
| 100 |
-
parsed = json.loads(workflow_json)
|
| 101 |
-
return json.dumps(parsed, indent=2)
|
| 102 |
-
except json.JSONDecodeError:
|
| 103 |
-
# Return raw output if JSON parsing fails
|
| 104 |
-
return workflow_json
|
| 105 |
-
|
| 106 |
-
return generated_text
|
| 107 |
-
|
| 108 |
-
def enhance_existing_workflow(
|
| 109 |
-
self,
|
| 110 |
-
existing_workflow: str,
|
| 111 |
-
enhancement_request: str,
|
| 112 |
-
max_length: int = 2048,
|
| 113 |
-
temperature: float = 0.7
|
| 114 |
-
) -> str:
|
| 115 |
-
"""
|
| 116 |
-
Enhance an existing n8n workflow based on a request.
|
| 117 |
-
|
| 118 |
-
Args:
|
| 119 |
-
existing_workflow: Existing n8n workflow JSON
|
| 120 |
-
enhancement_request: Description of desired enhancements
|
| 121 |
-
max_length: Maximum tokens to generate
|
| 122 |
-
temperature: Sampling temperature
|
| 123 |
-
|
| 124 |
-
Returns:
|
| 125 |
-
Enhanced n8n workflow JSON as string
|
| 126 |
-
"""
|
| 127 |
-
prompt = f"""Enhance this n8n workflow: {enhancement_request}
|
| 128 |
-
|
| 129 |
-
Current workflow:
|
| 130 |
-
{existing_workflow}
|
| 131 |
-
|
| 132 |
-
Enhanced workflow JSON:"""
|
| 133 |
-
|
| 134 |
-
inputs = self.tokenizer(
|
| 135 |
-
prompt,
|
| 136 |
-
return_tensors="pt",
|
| 137 |
-
truncation=True,
|
| 138 |
-
max_length=1024
|
| 139 |
-
).to(self.device)
|
| 140 |
-
|
| 141 |
-
with torch.no_grad():
|
| 142 |
-
outputs = self.model.generate(
|
| 143 |
-
**inputs,
|
| 144 |
-
max_length=max_length,
|
| 145 |
-
temperature=temperature,
|
| 146 |
-
top_p=0.9,
|
| 147 |
-
do_sample=True,
|
| 148 |
-
pad_token_id=self.tokenizer.eos_token_id,
|
| 149 |
-
repetition_penalty=1.1
|
| 150 |
-
)
|
| 151 |
-
|
| 152 |
-
generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 153 |
-
|
| 154 |
-
# Extract enhanced workflow
|
| 155 |
-
json_start = generated_text.rfind('{')
|
| 156 |
-
if json_start != -1:
|
| 157 |
-
enhanced_workflow = generated_text[json_start:]
|
| 158 |
-
try:
|
| 159 |
-
parsed = json.loads(enhanced_workflow)
|
| 160 |
-
return json.dumps(parsed, indent=2)
|
| 161 |
-
except json.JSONDecodeError:
|
| 162 |
-
return enhanced_workflow
|
| 163 |
-
|
| 164 |
-
return generated_text
|
| 165 |
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
simple_workflow = """{
|
| 180 |
-
"nodes": [
|
| 181 |
-
{
|
| 182 |
-
"id": "1",
|
| 183 |
-
"name": "Start",
|
| 184 |
-
"type": "n8n-nodes-base.start"
|
| 185 |
-
}
|
| 186 |
-
],
|
| 187 |
-
"connections": {}
|
| 188 |
-
}"""
|
| 189 |
-
|
| 190 |
-
enhancement = "Add error handling and logging"
|
| 191 |
-
enhanced = generator.enhance_existing_workflow(simple_workflow, enhancement)
|
| 192 |
-
print("Enhanced Workflow:")
|
| 193 |
-
print(enhanced)
|
| 194 |
-
|
| 195 |
-
# Gradio Interface
|
| 196 |
-
def create_gradio_interface():
|
| 197 |
-
generator = QwenN8NGenerator()
|
| 198 |
-
|
| 199 |
-
def generate_workflow_ui(prompt, max_length, temperature):
|
| 200 |
-
try:
|
| 201 |
-
workflow = generator.generate_n8n_workflow(
|
| 202 |
-
prompt,
|
| 203 |
-
max_length=max_length,
|
| 204 |
-
temperature=temperature
|
| 205 |
-
)
|
| 206 |
-
return workflow
|
| 207 |
-
except Exception as e:
|
| 208 |
-
return f"Error: {str(e)}"
|
| 209 |
-
|
| 210 |
-
def enhance_workflow_ui(existing_workflow, enhancement_request, max_length, temperature):
|
| 211 |
-
try:
|
| 212 |
-
enhanced = generator.enhance_existing_workflow(
|
| 213 |
-
existing_workflow,
|
| 214 |
-
enhancement_request,
|
| 215 |
-
max_length=max_length,
|
| 216 |
-
temperature=temperature
|
| 217 |
-
)
|
| 218 |
-
return enhanced
|
| 219 |
-
except Exception as e:
|
| 220 |
-
return f"Error: {str(e)}"
|
| 221 |
-
|
| 222 |
-
# Create Gradio interface
|
| 223 |
-
with gr.Blocks(title="Qwen2.5-7B n8n Workflow Generator") as demo:
|
| 224 |
-
gr.Markdown("# n8n Workflow Generator using Qwen2.5-7B")
|
| 225 |
-
|
| 226 |
-
with gr.Tab("Generate New Workflow"):
|
| 227 |
-
with gr.Row():
|
| 228 |
-
with gr.Column():
|
| 229 |
-
prompt_input = gr.Textbox(
|
| 230 |
-
label="Workflow Description",
|
| 231 |
-
placeholder="Describe the workflow you want to create...",
|
| 232 |
-
lines=3
|
| 233 |
-
)
|
| 234 |
-
max_length_slider = gr.Slider(
|
| 235 |
-
minimum=512,
|
| 236 |
-
maximum=4096,
|
| 237 |
-
value=2048,
|
| 238 |
-
label="Max Length"
|
| 239 |
-
)
|
| 240 |
-
temperature_slider = gr.Slider(
|
| 241 |
-
minimum=0.1,
|
| 242 |
-
maximum=1.0,
|
| 243 |
-
value=0.7,
|
| 244 |
-
label="Temperature"
|
| 245 |
-
)
|
| 246 |
-
generate_btn = gr.Button("Generate Workflow", variant="primary")
|
| 247 |
-
|
| 248 |
-
with gr.Column():
|
| 249 |
-
workflow_output = gr.Code(
|
| 250 |
-
label="Generated n8n Workflow",
|
| 251 |
-
language="json",
|
| 252 |
-
lines=20
|
| 253 |
-
)
|
| 254 |
-
|
| 255 |
-
generate_btn.click(
|
| 256 |
-
generate_workflow_ui,
|
| 257 |
-
inputs=[prompt_input, max_length_slider, temperature_slider],
|
| 258 |
-
outputs=workflow_output
|
| 259 |
-
)
|
| 260 |
-
|
| 261 |
-
with gr.Tab("Enhance Existing Workflow"):
|
| 262 |
-
with gr.Row():
|
| 263 |
-
with gr.Column():
|
| 264 |
-
existing_workflow_input = gr.Code(
|
| 265 |
-
label="Existing Workflow JSON",
|
| 266 |
-
language="json",
|
| 267 |
-
lines=10
|
| 268 |
-
)
|
| 269 |
-
enhancement_input = gr.Textbox(
|
| 270 |
-
label="Enhancement Request",
|
| 271 |
-
placeholder="Describe how you want to enhance the workflow...",
|
| 272 |
-
lines=3
|
| 273 |
-
)
|
| 274 |
-
enhance_max_length = gr.Slider(
|
| 275 |
-
minimum=512,
|
| 276 |
-
maximum=4096,
|
| 277 |
-
value=2048,
|
| 278 |
-
label="Max Length"
|
| 279 |
-
)
|
| 280 |
-
enhance_temperature = gr.Slider(
|
| 281 |
-
minimum=0.1,
|
| 282 |
-
maximum=1.0,
|
| 283 |
-
value=0.7,
|
| 284 |
-
label="Temperature"
|
| 285 |
-
)
|
| 286 |
-
enhance_btn = gr.Button("Enhance Workflow", variant="primary")
|
| 287 |
-
|
| 288 |
-
with gr.Column():
|
| 289 |
-
enhanced_output = gr.Code(
|
| 290 |
-
label="Enhanced n8n Workflow",
|
| 291 |
-
language="json",
|
| 292 |
-
lines=20
|
| 293 |
-
)
|
| 294 |
-
|
| 295 |
-
enhance_btn.click(
|
| 296 |
-
enhance_workflow_ui,
|
| 297 |
-
inputs=[existing_workflow_input, enhancement_input, enhance_max_length, enhance_temperature],
|
| 298 |
-
outputs=enhanced_output
|
| 299 |
-
)
|
| 300 |
-
|
| 301 |
-
# Examples
|
| 302 |
-
gr.Markdown("## Example Prompts")
|
| 303 |
-
gr.Examples(
|
| 304 |
-
examples=[
|
| 305 |
-
["Create a workflow that monitors a GitHub repository for new issues and sends Slack notifications"],
|
| 306 |
-
["Build an automated lead scoring system that processes form submissions and updates CRM"],
|
| 307 |
-
["Design a workflow for social media automation that posts content across multiple platforms"],
|
| 308 |
-
["Create a data pipeline that fetches API data, processes it, and stores in database"],
|
| 309 |
-
["Build a customer support workflow that categorizes tickets and assigns to appropriate teams"]
|
| 310 |
-
],
|
| 311 |
-
inputs=prompt_input
|
| 312 |
)
|
| 313 |
|
| 314 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 315 |
|
|
|
|
| 316 |
if __name__ == "__main__":
|
| 317 |
-
|
| 318 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
|
| 320 |
-
|
| 321 |
-
# demo = create_gradio_interface()
|
| 322 |
-
# demo.launch(share=True)
|
|
|
|
| 1 |
import torch
|
| 2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
import json
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
def load_qwen_n8n_model():
|
| 6 |
+
"""Load the Qwen2.5-7B-n8n model with fallback tokenizer"""
|
| 7 |
+
model_name = "npv2k1/Qwen2.5-7B-n8n"
|
| 8 |
+
|
| 9 |
+
# Load tokenizer with fallback
|
| 10 |
+
try:
|
| 11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 12 |
+
except:
|
| 13 |
+
print("Using base Qwen tokenizer...")
|
| 14 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-7B-Instruct", trust_remote_code=True)
|
| 15 |
+
|
| 16 |
+
# Load model
|
| 17 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 18 |
+
model_name,
|
| 19 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 20 |
+
device_map="auto" if torch.cuda.is_available() else None,
|
| 21 |
+
trust_remote_code=True
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
return tokenizer, model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
+
def generate_n8n_workflow(tokenizer, model, prompt, max_length=1024):
|
| 27 |
+
"""Generate n8n workflow from prompt"""
|
| 28 |
+
formatted_prompt = f"Create an n8n workflow: {prompt}\n\nJSON:"
|
| 29 |
+
|
| 30 |
+
inputs = tokenizer(formatted_prompt, return_tensors="pt", truncation=True)
|
| 31 |
+
|
| 32 |
+
with torch.no_grad():
|
| 33 |
+
outputs = model.generate(
|
| 34 |
+
**inputs,
|
| 35 |
+
max_length=max_length,
|
| 36 |
+
temperature=0.7,
|
| 37 |
+
do_sample=True,
|
| 38 |
+
pad_token_id=tokenizer.eos_token_id
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
)
|
| 40 |
|
| 41 |
+
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 42 |
+
|
| 43 |
+
# Extract JSON
|
| 44 |
+
json_start = result.find('{')
|
| 45 |
+
if json_start != -1:
|
| 46 |
+
return result[json_start:]
|
| 47 |
+
return result
|
| 48 |
|
| 49 |
+
# Usage
|
| 50 |
if __name__ == "__main__":
|
| 51 |
+
tokenizer, model = load_qwen_n8n_model()
|
| 52 |
+
|
| 53 |
+
workflow = generate_n8n_workflow(
|
| 54 |
+
tokenizer,
|
| 55 |
+
model,
|
| 56 |
+
"Send email when new GitHub issue is created"
|
| 57 |
+
)
|
| 58 |
|
| 59 |
+
print(workflow)
|
|
|
|
|
|