Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import TFBertForSequenceClassification, BertTokenizer | |
import tensorflow as tf | |
import praw | |
import os | |
import pytesseract | |
from PIL import Image | |
import cv2 | |
import numpy as np | |
import re | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
from scipy.special import softmax | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
def get_classification_report(): | |
from sklearn.metrics import classification_report | |
import pandas as pd | |
# Load your test data | |
df = pd.read_csv("test.csv") | |
texts = df["text"].tolist() | |
true_labels = df["label"].tolist() | |
# Load tokenizer and model | |
#tokenizer = AutoTokenizer.from_pretrained("Shrish/mbert-sentiment") | |
#model = TFAutoModelForSequenceClassification.from_pretrained("Shrish/mbert-sentiment") | |
fallback_model_name = "cardiffnlp/twitter-roberta-base-sentiment" | |
tokenizer = AutoTokenizer.from_pretrained(fallback_model_name) | |
model = AutoModelForSequenceClassification.from_pretrained(fallback_model_name) | |
# Tokenize and predict | |
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="tf") | |
outputs = model(inputs) | |
predictions = tf.math.argmax(outputs.logits, axis=1).numpy() | |
# Generate report | |
report = classification_report(true_labels, predictions, target_names=["negative", "neutral", "positive"]) | |
return report | |