Spaces:
Sleeping
Sleeping
'''import gradio as gr | |
from transformers import TFBertForSequenceClassification, BertTokenizer | |
import tensorflow as tf | |
# Load model and tokenizer from your HF model repo | |
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert") | |
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert") | |
def classify_sentiment(text): | |
inputs = tokenizer(text, return_tensors="tf", padding=True, truncation=True) | |
predictions = model(inputs).logits | |
label = tf.argmax(predictions, axis=1).numpy()[0] | |
labels = {0: "Negative", 1: "Neutral", 2: "Positive"} | |
return labels[label] | |
demo = gr.Interface(fn=classify_sentiment, | |
inputs=gr.Textbox(placeholder="Enter a tweet..."), | |
outputs="text", | |
title="Tweet Sentiment Classifier", | |
description="Multilingual BERT-based Sentiment Analysis") | |
demo.launch() | |
''' | |
''' | |
import gradio as gr | |
from transformers import TFBertForSequenceClassification, BertTokenizer | |
import tensorflow as tf | |
# Load model and tokenizer from Hugging Face | |
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert") | |
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert") | |
# Manually define the correct mapping | |
LABELS = { | |
0: "Neutral", | |
1: "Positive", | |
2: "Negative" | |
} | |
def classify_sentiment(text): | |
inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True) | |
outputs = model(inputs) | |
probs = tf.nn.softmax(outputs.logits, axis=1) | |
pred_label = tf.argmax(probs, axis=1).numpy()[0] | |
confidence = float(tf.reduce_max(probs).numpy()) | |
return f"Prediction: {LABELS[pred_label]} (Confidence: {confidence:.2f})" | |
demo = gr.Interface( | |
fn=classify_sentiment, | |
inputs=gr.Textbox(placeholder="Type your tweet here..."), | |
outputs="text", | |
title="Sentiment Analysis on Tweets", | |
description="Multilingual BERT model fine-tuned for sentiment classification. Labels: Positive, Neutral, Negative." | |
) | |
demo.launch() | |
''' | |
''' | |
import gradio as gr | |
from transformers import TFBertForSequenceClassification, BertTokenizer | |
import tensorflow as tf | |
import snscrape.modules.twitter as sntwitter | |
import praw | |
import os | |
# Load model and tokenizer | |
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert") | |
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert") | |
# Label Mapping | |
LABELS = { | |
0: "Neutral", | |
1: "Positive", | |
2: "Negative" | |
} | |
# Reddit API setup with environment variables | |
reddit = praw.Reddit( | |
client_id=os.getenv("REDDIT_CLIENT_ID"), | |
client_secret=os.getenv("REDDIT_CLIENT_SECRET"), | |
user_agent=os.getenv("REDDIT_USER_AGENT", "sentiment-classifier-script") | |
) | |
# Tweet text extractor | |
def fetch_tweet_text(tweet_url): | |
try: | |
tweet_id = tweet_url.split("/")[-1] | |
for tweet in sntwitter.TwitterTweetScraper(tweet_id).get_items(): | |
return tweet.content | |
return "Unable to extract tweet content." | |
except Exception as e: | |
return f"Error fetching tweet: {str(e)}" | |
# Reddit post extractor | |
def fetch_reddit_text(reddit_url): | |
try: | |
submission = reddit.submission(url=reddit_url) | |
return f"{submission.title}\n\n{submission.selftext}" | |
except Exception as e: | |
return f"Error fetching Reddit post: {str(e)}" | |
# Sentiment classification logic | |
def classify_sentiment(text_input, tweet_url, reddit_url): | |
if reddit_url.strip(): | |
text = fetch_reddit_text(reddit_url) | |
elif tweet_url.strip(): | |
text = fetch_tweet_text(tweet_url) | |
elif text_input.strip(): | |
text = text_input | |
else: | |
return "[!] Please enter text or a post URL." | |
if text.lower().startswith("error") or "Unable to extract" in text: | |
return f"[!] Error: {text}" | |
try: | |
inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True) | |
outputs = model(inputs) | |
probs = tf.nn.softmax(outputs.logits, axis=1) | |
pred_label = tf.argmax(probs, axis=1).numpy()[0] | |
confidence = float(tf.reduce_max(probs).numpy()) | |
return f"Prediction: {LABELS[pred_label]} (Confidence: {confidence:.2f})" | |
except Exception as e: | |
return f"[!] Prediction error: {str(e)}" | |
# Gradio Interface | |
demo = gr.Interface( | |
fn=classify_sentiment, | |
inputs=[ | |
gr.Textbox(label="Custom Text Input", placeholder="Type your tweet or message here..."), | |
gr.Textbox(label="Tweet URL", placeholder="Paste a tweet URL here (optional)"), | |
gr.Textbox(label="Reddit Post URL", placeholder="Paste a Reddit post URL here (optional)") | |
], | |
outputs="text", | |
title="Multilingual Sentiment Analysis", | |
description="Analyze sentiment of text, tweets, or Reddit posts. Supports multiple languages using BERT!" | |
) | |
demo.launch() | |
''' | |
''' | |
import gradio as gr | |
from transformers import TFBertForSequenceClassification, BertTokenizer | |
import tensorflow as tf | |
import praw | |
import os | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
from scipy.special import softmax | |
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert") | |
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert") | |
LABELS = { | |
0: "Neutral", | |
1: "Positive", | |
2: "Negative" | |
} | |
fallback_model_name = "cardiffnlp/twitter-roberta-base-sentiment" | |
fallback_tokenizer = AutoTokenizer.from_pretrained(fallback_model_name) | |
fallback_model = AutoModelForSequenceClassification.from_pretrained(fallback_model_name) | |
# Reddit API | |
reddit = praw.Reddit( | |
client_id=os.getenv("REDDIT_CLIENT_ID"), | |
client_secret=os.getenv("REDDIT_CLIENT_SECRET"), | |
user_agent=os.getenv("REDDIT_USER_AGENT", "sentiment-classifier-ui") | |
) | |
def fetch_reddit_text(reddit_url): | |
try: | |
submission = reddit.submission(url=reddit_url) | |
return f"{submission.title}\n\n{submission.selftext}" | |
except Exception as e: | |
return f"Error fetching Reddit post: {str(e)}" | |
def fallback_classifier(text): | |
encoded_input = fallback_tokenizer(text, return_tensors='pt', truncation=True, padding=True) | |
with torch.no_grad(): | |
output = fallback_model(**encoded_input) | |
scores = softmax(output.logits.numpy()[0]) | |
labels = ['Negative', 'Neutral', 'Positive'] | |
return f"Prediction: {labels[scores.argmax()]}" | |
def classify_sentiment(text_input, reddit_url): | |
if reddit_url.strip(): | |
text = fetch_reddit_text(reddit_url) | |
elif text_input.strip(): | |
text = text_input | |
else: | |
return "[!] Please enter some text or a Reddit post URL." | |
if text.lower().startswith("error") or "Unable to extract" in text: | |
return f"[!] {text}" | |
try: | |
inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True) | |
outputs = model(inputs) | |
probs = tf.nn.softmax(outputs.logits, axis=1) | |
confidence = float(tf.reduce_max(probs).numpy()) | |
pred_label = tf.argmax(probs, axis=1).numpy()[0] | |
if confidence < 0.5: | |
return fallback_classifier(text) | |
return f"Prediction: {LABELS[pred_label]}" | |
except Exception as e: | |
return f"[!] Prediction error: {str(e)}" | |
# Gradio interface | |
demo = gr.Interface( | |
fn=classify_sentiment, | |
inputs=[ | |
gr.Textbox( | |
label="Text Input (can be tweet or any content)", | |
placeholder="Paste tweet or type any content here...", | |
lines=4 | |
), | |
gr.Textbox( | |
label="Reddit Post URL", | |
placeholder="Paste a Reddit post URL (optional)", | |
lines=1 | |
), | |
], | |
outputs="text", | |
title="Sentiment Analyzer", | |
description="🔍 Paste any text (including tweet content) OR a Reddit post URL to analyze sentiment.\n\n💡 Tweet URLs are not supported directly due to platform restrictions. Please paste tweet content manually." | |
) | |
demo.launch() | |
''' | |
''' | |
import gradio as gr | |
from transformers import TFBertForSequenceClassification, BertTokenizer | |
import tensorflow as tf | |
import praw | |
import os | |
import pytesseract | |
from PIL import Image | |
import cv2 | |
import numpy as np | |
import re | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
from scipy.special import softmax | |
# Install tesseract OCR (only runs once in Hugging Face Spaces) | |
os.system("apt-get update && apt-get install -y tesseract-ocr") | |
# Load main model | |
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert") | |
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert") | |
LABELS = { | |
0: "Neutral", | |
1: "Positive", | |
2: "Negative" | |
} | |
# Load fallback model | |
fallback_model_name = "cardiffnlp/twitter-roberta-base-sentiment" | |
fallback_tokenizer = AutoTokenizer.from_pretrained(fallback_model_name) | |
fallback_model = AutoModelForSequenceClassification.from_pretrained(fallback_model_name) | |
# Reddit API setup | |
reddit = praw.Reddit( | |
client_id=os.getenv("REDDIT_CLIENT_ID"), | |
client_secret=os.getenv("REDDIT_CLIENT_SECRET"), | |
user_agent=os.getenv("REDDIT_USER_AGENT", "sentiment-classifier-ui") | |
) | |
def fetch_reddit_text(reddit_url): | |
try: | |
submission = reddit.submission(url=reddit_url) | |
return f"{submission.title}\n\n{submission.selftext}" | |
except Exception as e: | |
return f"Error fetching Reddit post: {str(e)}" | |
def fallback_classifier(text): | |
encoded_input = fallback_tokenizer(text, return_tensors='pt', truncation=True, padding=True) | |
with torch.no_grad(): | |
output = fallback_model(**encoded_input) | |
scores = softmax(output.logits.numpy()[0]) | |
labels = ['Negative', 'Neutral', 'Positive'] | |
return f"Prediction: {labels[scores.argmax()]}" | |
def clean_ocr_text(text): | |
text = text.strip() | |
text = re.sub(r'\s+', ' ', text) # Replace multiple spaces and newlines | |
text = re.sub(r'[^\x00-\x7F]+', '', text) # Remove non-ASCII characters | |
return text | |
def classify_sentiment(text_input, reddit_url, image): | |
if reddit_url.strip(): | |
text = fetch_reddit_text(reddit_url) | |
elif image is not None: | |
try: | |
img_array = np.array(image) | |
gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY) | |
_, thresh = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY) | |
text = pytesseract.image_to_string(thresh) | |
text = clean_ocr_text(text) | |
except Exception as e: | |
return f"[!] OCR failed: {str(e)}" | |
elif text_input.strip(): | |
text = text_input | |
else: | |
return "[!] Please enter some text, upload an image, or provide a Reddit URL." | |
if text.lower().startswith("error") or "Unable to extract" in text: | |
return f"[!] {text}" | |
try: | |
inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True) | |
outputs = model(inputs) | |
probs = tf.nn.softmax(outputs.logits, axis=1) | |
confidence = float(tf.reduce_max(probs).numpy()) | |
pred_label = tf.argmax(probs, axis=1).numpy()[0] | |
if confidence < 0.5: | |
return fallback_classifier(text) | |
return f"Prediction: {LABELS[pred_label]}" | |
except Exception as e: | |
return f"[!] Prediction error: {str(e)}" | |
# Gradio interface | |
demo = gr.Interface( | |
fn=classify_sentiment, | |
inputs=[ | |
gr.Textbox( | |
label="Text Input (can be tweet or any content)", | |
placeholder="Paste tweet or type any content here...", | |
lines=4 | |
), | |
gr.Textbox( | |
label="Reddit Post URL", | |
placeholder="Paste a Reddit post URL (optional)", | |
lines=1 | |
), | |
gr.Image( | |
label="Upload Image (optional)", | |
type="pil" | |
) | |
], | |
outputs="text", | |
title="Sentiment Analyzer", | |
description="🔍 Paste any text, Reddit post URL, or upload an image containing text to analyze sentiment.\n\n💡 Tweet URLs are not supported. Please paste tweet content or screenshot instead." | |
) | |
demo.launch() | |
''' | |
import gradio as gr | |
from transformers import TFAutoModelForSequenceClassification, AutoTokenizer | |
import tensorflow as tf | |
import numpy as np | |
import praw | |
import re | |
from wordcloud import WordCloud | |
import matplotlib.pyplot as plt | |
from collections import Counter | |
import plotly.graph_objects as go | |
import os | |
# Load pre-trained model and tokenizer | |
model = TFAutoModelForSequenceClassification.from_pretrained("shrish191/sentiment-bert") | |
tokenizer = AutoTokenizer.from_pretrained("shrish191/sentiment-bert") | |
label_map = {0: 'Negative', 1: 'Neutral', 2: 'Positive'} | |
# Sentiment Prediction Function | |
def predict_sentiment(text): | |
inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True) | |
outputs = model(inputs)[0] | |
probs = tf.nn.softmax(outputs, axis=1).numpy() | |
pred_label = np.argmax(probs, axis=1)[0] | |
return label_map[pred_label] | |
# Reddit URL Handling | |
def analyze_reddit_url(url): | |
reddit = praw.Reddit( | |
client_id="YOUR_CLIENT_ID", | |
client_secret="YOUR_CLIENT_SECRET", | |
user_agent="YOUR_USER_AGENT" | |
) | |
try: | |
submission = reddit.submission(url=url) | |
submission.comments.replace_more(limit=0) | |
comments = [comment.body for comment in submission.comments.list() if len(comment.body) > 10][:100] | |
sentiments = [predict_sentiment(comment) for comment in comments] | |
sentiment_counts = Counter(sentiments) | |
result_text = "\n".join([f"{s}: {c}" for s, c in sentiment_counts.items()]) | |
# Pie chart | |
fig = go.Figure(data=[go.Pie(labels=list(sentiment_counts.keys()), | |
values=list(sentiment_counts.values()), | |
hole=0.3)]) | |
fig.update_layout(title="Sentiment Distribution of Reddit Comments") | |
return result_text, fig | |
except Exception as e: | |
return str(e), None | |
# Subreddit Analysis Function | |
def analyze_subreddit(subreddit_name): | |
reddit = praw.Reddit( | |
client_id="YOUR_CLIENT_ID", | |
client_secret="YOUR_CLIENT_SECRET", | |
user_agent="YOUR_USER_AGENT" | |
) | |
try: | |
subreddit = reddit.subreddit(subreddit_name) | |
posts = list(subreddit.hot(limit=100)) | |
texts = [post.title + " " + post.selftext for post in posts if post.selftext or post.title] | |
if not texts: | |
return "No valid text data found in subreddit.", None | |
sentiments = [predict_sentiment(text) for text in texts] | |
sentiment_counts = Counter(sentiments) | |
result_text = "\n".join([f"{s}: {c}" for s, c in sentiment_counts.items()]) | |
# Pie chart | |
fig = go.Figure(data=[go.Pie(labels=list(sentiment_counts.keys()), | |
values=list(sentiment_counts.values()), | |
hole=0.3)]) | |
fig.update_layout(title=f"Sentiment Distribution in r/{subreddit_name}") | |
return result_text, fig | |
except Exception as e: | |
return str(e), None | |
# Image Upload Functionality | |
from PIL import Image | |
import pytesseract | |
def extract_text_from_image(image): | |
try: | |
img = Image.open(image) | |
text = pytesseract.image_to_string(img) | |
return text | |
except Exception as e: | |
return f"Error extracting text: {e}" | |
def analyze_image_sentiment(image): | |
extracted_text = extract_text_from_image(image) | |
if extracted_text: | |
sentiment = predict_sentiment(extracted_text) | |
return f"Extracted Text: {extracted_text}\n\nPredicted Sentiment: {sentiment}" | |
return "No text extracted." | |
# Gradio Interface | |
with gr.Blocks() as demo: | |
gr.Markdown("## 🧠 Sentiment Analysis App") | |
with gr.Tab("Analyze Text"): | |
input_text = gr.Textbox(label="Enter text") | |
output_text = gr.Textbox(label="Predicted Sentiment") | |
analyze_btn = gr.Button("Analyze") | |
analyze_btn.click(fn=predict_sentiment, inputs=input_text, outputs=output_text) | |
with gr.Tab("Analyze Reddit URL"): | |
reddit_url = gr.Textbox(label="Enter Reddit post URL") | |
url_result = gr.Textbox(label="Sentiment Counts") | |
url_plot = gr.Plot(label="Pie Chart") | |
analyze_url_btn = gr.Button("Analyze Reddit Comments") | |
analyze_url_btn.click(fn=analyze_reddit_url, inputs=reddit_url, outputs=[url_result, url_plot]) | |
with gr.Tab("Analyze Image"): | |
image_input = gr.Image(label="Upload an image") | |
image_result = gr.Textbox(label="Sentiment from Image Text") | |
analyze_img_btn = gr.Button("Analyze Image") | |
analyze_img_btn.click(fn=analyze_image_sentiment, inputs=image_input, outputs=image_result) | |
with gr.Tab("Analyze Subreddit"): | |
subreddit_input = gr.Textbox(label="Enter subreddit name (without r/)") | |
subreddit_result = gr.Textbox(label="Sentiment Counts") | |
subreddit_plot = gr.Plot(label="Pie Chart") | |
analyze_subreddit_btn = gr.Button("Analyze Subreddit") | |
analyze_subreddit_btn.click(fn=analyze_subreddit, inputs=subreddit_input, outputs=[subreddit_result, subreddit_plot]) | |
demo.launch() | |