Spaces:
Sleeping
Sleeping
def get_classification_report(): | |
from sklearn.metrics import classification_report | |
import pandas as pd | |
# Load your test data | |
df = pd.read_csv("test.csv") | |
texts = df["text"].tolist() | |
true_labels = df["label"].tolist() | |
# Load tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained("Shrish/mbert-sentiment") | |
model = TFAutoModelForSequenceClassification.from_pretrained("Shrish/mbert-sentiment") | |
# Tokenize and predict | |
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="tf") | |
outputs = model(inputs) | |
predictions = tf.math.argmax(outputs.logits, axis=1).numpy() | |
# Generate report | |
report = classification_report(true_labels, predictions, target_names=["negative", "neutral", "positive"]) | |
return report | |