Spaces:
Sleeping
Sleeping
'''import gradio as gr | |
from transformers import TFBertForSequenceClassification, BertTokenizer | |
import tensorflow as tf | |
# Load model and tokenizer from your HF model repo | |
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert") | |
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert") | |
def classify_sentiment(text): | |
inputs = tokenizer(text, return_tensors="tf", padding=True, truncation=True) | |
predictions = model(inputs).logits | |
label = tf.argmax(predictions, axis=1).numpy()[0] | |
labels = {0: "Negative", 1: "Neutral", 2: "Positive"} | |
return labels[label] | |
demo = gr.Interface(fn=classify_sentiment, | |
inputs=gr.Textbox(placeholder="Enter a tweet..."), | |
outputs="text", | |
title="Tweet Sentiment Classifier", | |
description="Multilingual BERT-based Sentiment Analysis") | |
demo.launch() | |
''' | |
''' | |
import gradio as gr | |
from transformers import TFBertForSequenceClassification, BertTokenizer | |
import tensorflow as tf | |
# Load model and tokenizer from Hugging Face | |
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert") | |
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert") | |
# Manually define the correct mapping | |
LABELS = { | |
0: "Neutral", | |
1: "Positive", | |
2: "Negative" | |
} | |
def classify_sentiment(text): | |
inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True) | |
outputs = model(inputs) | |
probs = tf.nn.softmax(outputs.logits, axis=1) | |
pred_label = tf.argmax(probs, axis=1).numpy()[0] | |
confidence = float(tf.reduce_max(probs).numpy()) | |
return f"Prediction: {LABELS[pred_label]} (Confidence: {confidence:.2f})" | |
demo = gr.Interface( | |
fn=classify_sentiment, | |
inputs=gr.Textbox(placeholder="Type your tweet here..."), | |
outputs="text", | |
title="Sentiment Analysis on Tweets", | |
description="Multilingual BERT model fine-tuned for sentiment classification. Labels: Positive, Neutral, Negative." | |
) | |
demo.launch() | |
''' | |
''' | |
import gradio as gr | |
from transformers import TFBertForSequenceClassification, BertTokenizer | |
import tensorflow as tf | |
import snscrape.modules.twitter as sntwitter | |
import praw | |
import os | |
# Load model and tokenizer | |
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert") | |
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert") | |
# Label Mapping | |
LABELS = { | |
0: "Neutral", | |
1: "Positive", | |
2: "Negative" | |
} | |
# Reddit API setup with environment variables | |
reddit = praw.Reddit( | |
client_id=os.getenv("REDDIT_CLIENT_ID"), | |
client_secret=os.getenv("REDDIT_CLIENT_SECRET"), | |
user_agent=os.getenv("REDDIT_USER_AGENT", "sentiment-classifier-script") | |
) | |
# Tweet text extractor | |
def fetch_tweet_text(tweet_url): | |
try: | |
tweet_id = tweet_url.split("/")[-1] | |
for tweet in sntwitter.TwitterTweetScraper(tweet_id).get_items(): | |
return tweet.content | |
return "Unable to extract tweet content." | |
except Exception as e: | |
return f"Error fetching tweet: {str(e)}" | |
# Reddit post extractor | |
def fetch_reddit_text(reddit_url): | |
try: | |
submission = reddit.submission(url=reddit_url) | |
return f"{submission.title}\n\n{submission.selftext}" | |
except Exception as e: | |
return f"Error fetching Reddit post: {str(e)}" | |
# Sentiment classification logic | |
def classify_sentiment(text_input, tweet_url, reddit_url): | |
if reddit_url.strip(): | |
text = fetch_reddit_text(reddit_url) | |
elif tweet_url.strip(): | |
text = fetch_tweet_text(tweet_url) | |
elif text_input.strip(): | |
text = text_input | |
else: | |
return "[!] Please enter text or a post URL." | |
if text.lower().startswith("error") or "Unable to extract" in text: | |
return f"[!] Error: {text}" | |
try: | |
inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True) | |
outputs = model(inputs) | |
probs = tf.nn.softmax(outputs.logits, axis=1) | |
pred_label = tf.argmax(probs, axis=1).numpy()[0] | |
confidence = float(tf.reduce_max(probs).numpy()) | |
return f"Prediction: {LABELS[pred_label]} (Confidence: {confidence:.2f})" | |
except Exception as e: | |
return f"[!] Prediction error: {str(e)}" | |
# Gradio Interface | |
demo = gr.Interface( | |
fn=classify_sentiment, | |
inputs=[ | |
gr.Textbox(label="Custom Text Input", placeholder="Type your tweet or message here..."), | |
gr.Textbox(label="Tweet URL", placeholder="Paste a tweet URL here (optional)"), | |
gr.Textbox(label="Reddit Post URL", placeholder="Paste a Reddit post URL here (optional)") | |
], | |
outputs="text", | |
title="Multilingual Sentiment Analysis", | |
description="Analyze sentiment of text, tweets, or Reddit posts. Supports multiple languages using BERT!" | |
) | |
demo.launch() | |
''' | |
''' | |
import gradio as gr | |
from transformers import TFBertForSequenceClassification, BertTokenizer | |
import tensorflow as tf | |
import praw | |
import os | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
from scipy.special import softmax | |
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert") | |
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert") | |
LABELS = { | |
0: "Neutral", | |
1: "Positive", | |
2: "Negative" | |
} | |
fallback_model_name = "cardiffnlp/twitter-roberta-base-sentiment" | |
fallback_tokenizer = AutoTokenizer.from_pretrained(fallback_model_name) | |
fallback_model = AutoModelForSequenceClassification.from_pretrained(fallback_model_name) | |
# Reddit API | |
reddit = praw.Reddit( | |
client_id=os.getenv("REDDIT_CLIENT_ID"), | |
client_secret=os.getenv("REDDIT_CLIENT_SECRET"), | |
user_agent=os.getenv("REDDIT_USER_AGENT", "sentiment-classifier-ui") | |
) | |
def fetch_reddit_text(reddit_url): | |
try: | |
submission = reddit.submission(url=reddit_url) | |
return f"{submission.title}\n\n{submission.selftext}" | |
except Exception as e: | |
return f"Error fetching Reddit post: {str(e)}" | |
def fallback_classifier(text): | |
encoded_input = fallback_tokenizer(text, return_tensors='pt', truncation=True, padding=True) | |
with torch.no_grad(): | |
output = fallback_model(**encoded_input) | |
scores = softmax(output.logits.numpy()[0]) | |
labels = ['Negative', 'Neutral', 'Positive'] | |
return f"Prediction: {labels[scores.argmax()]}" | |
def classify_sentiment(text_input, reddit_url): | |
if reddit_url.strip(): | |
text = fetch_reddit_text(reddit_url) | |
elif text_input.strip(): | |
text = text_input | |
else: | |
return "[!] Please enter some text or a Reddit post URL." | |
if text.lower().startswith("error") or "Unable to extract" in text: | |
return f"[!] {text}" | |
try: | |
inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True) | |
outputs = model(inputs) | |
probs = tf.nn.softmax(outputs.logits, axis=1) | |
confidence = float(tf.reduce_max(probs).numpy()) | |
pred_label = tf.argmax(probs, axis=1).numpy()[0] | |
if confidence < 0.5: | |
return fallback_classifier(text) | |
return f"Prediction: {LABELS[pred_label]}" | |
except Exception as e: | |
return f"[!] Prediction error: {str(e)}" | |
# Gradio interface | |
demo = gr.Interface( | |
fn=classify_sentiment, | |
inputs=[ | |
gr.Textbox( | |
label="Text Input (can be tweet or any content)", | |
placeholder="Paste tweet or type any content here...", | |
lines=4 | |
), | |
gr.Textbox( | |
label="Reddit Post URL", | |
placeholder="Paste a Reddit post URL (optional)", | |
lines=1 | |
), | |
], | |
outputs="text", | |
title="Sentiment Analyzer", | |
description="π Paste any text (including tweet content) OR a Reddit post URL to analyze sentiment.\n\nπ‘ Tweet URLs are not supported directly due to platform restrictions. Please paste tweet content manually." | |
) | |
demo.launch() | |
''' | |
''' | |
import gradio as gr | |
from transformers import TFBertForSequenceClassification, BertTokenizer | |
import tensorflow as tf | |
import praw | |
import os | |
import pytesseract | |
from PIL import Image | |
import cv2 | |
import numpy as np | |
import re | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
from scipy.special import softmax | |
# Install tesseract OCR (only runs once in Hugging Face Spaces) | |
os.system("apt-get update && apt-get install -y tesseract-ocr") | |
# Load main model | |
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert") | |
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert") | |
LABELS = { | |
0: "Neutral", | |
1: "Positive", | |
2: "Negative" | |
} | |
# Load fallback model | |
fallback_model_name = "cardiffnlp/twitter-roberta-base-sentiment" | |
fallback_tokenizer = AutoTokenizer.from_pretrained(fallback_model_name) | |
fallback_model = AutoModelForSequenceClassification.from_pretrained(fallback_model_name) | |
# Reddit API setup | |
reddit = praw.Reddit( | |
client_id=os.getenv("REDDIT_CLIENT_ID"), | |
client_secret=os.getenv("REDDIT_CLIENT_SECRET"), | |
user_agent=os.getenv("REDDIT_USER_AGENT", "sentiment-classifier-ui") | |
) | |
def fetch_reddit_text(reddit_url): | |
try: | |
submission = reddit.submission(url=reddit_url) | |
return f"{submission.title}\n\n{submission.selftext}" | |
except Exception as e: | |
return f"Error fetching Reddit post: {str(e)}" | |
def fallback_classifier(text): | |
encoded_input = fallback_tokenizer(text, return_tensors='pt', truncation=True, padding=True) | |
with torch.no_grad(): | |
output = fallback_model(**encoded_input) | |
scores = softmax(output.logits.numpy()[0]) | |
labels = ['Negative', 'Neutral', 'Positive'] | |
return f"Prediction: {labels[scores.argmax()]}" | |
def clean_ocr_text(text): | |
text = text.strip() | |
text = re.sub(r'\s+', ' ', text) # Replace multiple spaces and newlines | |
text = re.sub(r'[^\x00-\x7F]+', '', text) # Remove non-ASCII characters | |
return text | |
def classify_sentiment(text_input, reddit_url, image): | |
if reddit_url.strip(): | |
text = fetch_reddit_text(reddit_url) | |
elif image is not None: | |
try: | |
img_array = np.array(image) | |
gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY) | |
_, thresh = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY) | |
text = pytesseract.image_to_string(thresh) | |
text = clean_ocr_text(text) | |
except Exception as e: | |
return f"[!] OCR failed: {str(e)}" | |
elif text_input.strip(): | |
text = text_input | |
else: | |
return "[!] Please enter some text, upload an image, or provide a Reddit URL." | |
if text.lower().startswith("error") or "Unable to extract" in text: | |
return f"[!] {text}" | |
try: | |
inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True) | |
outputs = model(inputs) | |
probs = tf.nn.softmax(outputs.logits, axis=1) | |
confidence = float(tf.reduce_max(probs).numpy()) | |
pred_label = tf.argmax(probs, axis=1).numpy()[0] | |
if confidence < 0.5: | |
return fallback_classifier(text) | |
return f"Prediction: {LABELS[pred_label]}" | |
except Exception as e: | |
return f"[!] Prediction error: {str(e)}" | |
# Gradio interface | |
demo = gr.Interface( | |
fn=classify_sentiment, | |
inputs=[ | |
gr.Textbox( | |
label="Text Input (can be tweet or any content)", | |
placeholder="Paste tweet or type any content here...", | |
lines=4 | |
), | |
gr.Textbox( | |
label="Reddit Post URL", | |
placeholder="Paste a Reddit post URL (optional)", | |
lines=1 | |
), | |
gr.Image( | |
label="Upload Image (optional)", | |
type="pil" | |
) | |
], | |
outputs="text", | |
title="Sentiment Analyzer", | |
description="π Paste any text, Reddit post URL, or upload an image containing text to analyze sentiment.\n\nπ‘ Tweet URLs are not supported. Please paste tweet content or screenshot instead." | |
) | |
demo.launch() | |
''' | |
import gradio as gr | |
import praw | |
import pandas as pd | |
import plotly.graph_objs as go | |
from transformers import AutoTokenizer, TFAutoModelForSequenceClassification | |
from tensorflow.nn import softmax | |
import numpy as np | |
# Load model and tokenizer | |
model_name = "shrish191/sentiment-bert" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = TFAutoModelForSequenceClassification.from_pretrained(model_name) | |
def classify_sentiment(text): | |
inputs = tokenizer(text, return_tensors="tf", padding=True, truncation=True) | |
outputs = model(inputs) | |
scores = softmax(outputs.logits, axis=1).numpy()[0] | |
labels = ['Negative', 'Neutral', 'Positive'] | |
sentiment = labels[np.argmax(scores)] | |
confidence = round(float(np.max(scores)) * 100, 2) | |
return sentiment, confidence | |
# Reddit sentiment dashboard | |
reddit = praw.Reddit( | |
client_id="YOUR_CLIENT_ID", | |
client_secret="YOUR_CLIENT_SECRET", | |
user_agent="YOUR_USER_AGENT" | |
) | |
def analyze_subreddit(subreddit_name, num_posts): | |
posts = [] | |
for submission in reddit.subreddit(subreddit_name).hot(limit=num_posts): | |
if not submission.stickied: | |
sentiment, confidence = classify_sentiment(submission.title) | |
posts.append({"title": submission.title, "sentiment": sentiment, "confidence": confidence}) | |
df = pd.DataFrame(posts) | |
sentiment_counts = df['sentiment'].value_counts().reindex(['Positive', 'Neutral', 'Negative'], fill_value=0) | |
total = sentiment_counts.sum() | |
sentiment_percentages = (sentiment_counts / total * 100).round(2) | |
fig = go.Figure(data=[ | |
go.Pie(labels=sentiment_percentages.index, values=sentiment_percentages.values, hole=.4) | |
]) | |
fig.update_layout(title="Sentiment Distribution in r/{} ({} posts)".format(subreddit_name, num_posts)) | |
return df, fig | |
with gr.Blocks() as demo: | |
gr.Markdown("## Reddit Subreddit Sentiment Dashboard") | |
subreddit_input = gr.Textbox(label="Enter Subreddit (without r/)", placeholder="e.g., technology") | |
num_posts_input = gr.Slider(10, 100, step=10, value=30, label="Number of Posts to Analyze") | |
analyze_button = gr.Button("Analyze") | |
sentiment_table = gr.Dataframe(label="Post Sentiments") | |
sentiment_chart = gr.Plot(label="Sentiment Pie Chart") | |
analyze_button.click( | |
analyze_subreddit, | |
inputs=[subreddit_input, num_posts_input], | |
outputs=[sentiment_table, sentiment_chart] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |