Spaces:
Sleeping
Sleeping
Add files
Browse files- .gitmodules +3 -0
- DeepDanbooru +1 -0
- app.py +152 -0
- requirements.txt +2 -0
.gitmodules
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[submodule "DeepDanbooru"]
|
| 2 |
+
path = DeepDanbooru
|
| 3 |
+
url = https://github.com/KichangKim/DeepDanbooru
|
DeepDanbooru
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Subproject commit 92ba0b56be5eed0037e3f067bb9867f5ac691647
|
app.py
ADDED
|
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
from __future__ import annotations
|
| 4 |
+
|
| 5 |
+
import argparse
|
| 6 |
+
import functools
|
| 7 |
+
import os
|
| 8 |
+
import pathlib
|
| 9 |
+
import subprocess
|
| 10 |
+
import sys
|
| 11 |
+
import urllib
|
| 12 |
+
import zipfile
|
| 13 |
+
from typing import Callable
|
| 14 |
+
|
| 15 |
+
# workaround for https://github.com/gradio-app/gradio/issues/483
|
| 16 |
+
command = 'pip install -U gradio==2.7.0'
|
| 17 |
+
subprocess.call(command.split())
|
| 18 |
+
|
| 19 |
+
command = 'pip install -r DeepDanbooru/requirements.txt'
|
| 20 |
+
subprocess.call(command.split())
|
| 21 |
+
sys.path.insert(0, 'DeepDanbooru')
|
| 22 |
+
|
| 23 |
+
import deepdanbooru as dd
|
| 24 |
+
import gradio as gr
|
| 25 |
+
import huggingface_hub
|
| 26 |
+
import numpy as np
|
| 27 |
+
import PIL.Image
|
| 28 |
+
import tensorflow as tf
|
| 29 |
+
|
| 30 |
+
TOKEN = os.environ['TOKEN']
|
| 31 |
+
|
| 32 |
+
ZIP_PATH = 'data.zip'
|
| 33 |
+
TAG_PATH = 'tags.txt'
|
| 34 |
+
MODEL_PATH = 'model-resnet_custom_v3.h5'
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def parse_args() -> argparse.Namespace:
|
| 38 |
+
parser = argparse.ArgumentParser()
|
| 39 |
+
parser.add_argument('--score-slider-step', type=float, default=0.05)
|
| 40 |
+
parser.add_argument('--score-threshold', type=float, default=0.5)
|
| 41 |
+
parser.add_argument('--theme', type=str, default='dark-grass')
|
| 42 |
+
parser.add_argument('--live', action='store_true')
|
| 43 |
+
parser.add_argument('--share', action='store_true')
|
| 44 |
+
parser.add_argument('--port', type=int)
|
| 45 |
+
parser.add_argument('--disable-queue',
|
| 46 |
+
dest='enable_queue',
|
| 47 |
+
action='store_false')
|
| 48 |
+
parser.add_argument('--allow-flagging', type=str, default='never')
|
| 49 |
+
parser.add_argument('--allow-screenshot', action='store_true')
|
| 50 |
+
return parser.parse_args()
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def download_sample_images() -> list[pathlib.Path]:
|
| 54 |
+
image_dir = pathlib.Path('samples')
|
| 55 |
+
image_dir.mkdir(exist_ok=True)
|
| 56 |
+
|
| 57 |
+
dataset_repo = 'hysts/sample-images-TADNE'
|
| 58 |
+
n_images = 36
|
| 59 |
+
paths = []
|
| 60 |
+
for index in range(n_images):
|
| 61 |
+
path = huggingface_hub.hf_hub_download(dataset_repo,
|
| 62 |
+
f'{index:02d}.jpg',
|
| 63 |
+
repo_type='dataset',
|
| 64 |
+
cache_dir=image_dir.as_posix(),
|
| 65 |
+
use_auth_token=TOKEN)
|
| 66 |
+
paths.append(pathlib.Path(path))
|
| 67 |
+
return paths
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def download_model_data() -> None:
|
| 71 |
+
url = 'https://github.com/KichangKim/DeepDanbooru/releases/download/v3-20200915-sgd-e30/deepdanbooru-v3-20200915-sgd-e30.zip'
|
| 72 |
+
urllib.request.urlretrieve(url, ZIP_PATH)
|
| 73 |
+
with zipfile.ZipFile(ZIP_PATH) as f:
|
| 74 |
+
f.extract(TAG_PATH)
|
| 75 |
+
f.extract(MODEL_PATH)
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def predict(image: PIL.Image.Image, score_threshold: float, model,
|
| 79 |
+
labels: list[str]) -> dict[str, float]:
|
| 80 |
+
_, height, width, _ = model.input_shape
|
| 81 |
+
image = np.asarray(image)
|
| 82 |
+
image = tf.image.resize(image,
|
| 83 |
+
size=(height, width),
|
| 84 |
+
method=tf.image.ResizeMethod.AREA,
|
| 85 |
+
preserve_aspect_ratio=True)
|
| 86 |
+
image = image.numpy()
|
| 87 |
+
image = dd.image.transform_and_pad_image(image, width, height)
|
| 88 |
+
image = image / 255.
|
| 89 |
+
probs = model.predict(image[None, ...])[0]
|
| 90 |
+
probs = probs.astype(float)
|
| 91 |
+
res = dict()
|
| 92 |
+
for prob, label in zip(probs, labels):
|
| 93 |
+
if prob < score_threshold:
|
| 94 |
+
continue
|
| 95 |
+
res[label] = prob
|
| 96 |
+
return res
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def main():
|
| 100 |
+
gr.close_all()
|
| 101 |
+
|
| 102 |
+
args = parse_args()
|
| 103 |
+
|
| 104 |
+
image_paths = download_sample_images()
|
| 105 |
+
examples = [[path.as_posix(), args.score_threshold]
|
| 106 |
+
for path in image_paths]
|
| 107 |
+
|
| 108 |
+
zip_path = pathlib.Path(ZIP_PATH)
|
| 109 |
+
if not zip_path.exists():
|
| 110 |
+
download_model_data()
|
| 111 |
+
|
| 112 |
+
model = tf.keras.models.load_model(MODEL_PATH)
|
| 113 |
+
|
| 114 |
+
with open(TAG_PATH) as f:
|
| 115 |
+
labels = [line.strip() for line in f.readlines()]
|
| 116 |
+
|
| 117 |
+
func = functools.partial(predict, model=model, labels=labels)
|
| 118 |
+
func = functools.update_wrapper(func, predict)
|
| 119 |
+
|
| 120 |
+
repo_url = 'https://github.com/KichangKim/DeepDanbooru'
|
| 121 |
+
title = 'KichangKim/DeepDanbooru'
|
| 122 |
+
description = f'A demo for {repo_url}'
|
| 123 |
+
article = None
|
| 124 |
+
|
| 125 |
+
gr.Interface(
|
| 126 |
+
func,
|
| 127 |
+
[
|
| 128 |
+
gr.inputs.Image(type='pil', label='Input'),
|
| 129 |
+
gr.inputs.Slider(0,
|
| 130 |
+
1,
|
| 131 |
+
step=args.score_slider_step,
|
| 132 |
+
default=args.score_threshold,
|
| 133 |
+
label='Score Threshold'),
|
| 134 |
+
],
|
| 135 |
+
gr.outputs.Label(label='Output'),
|
| 136 |
+
theme=args.theme,
|
| 137 |
+
title=title,
|
| 138 |
+
description=description,
|
| 139 |
+
article=article,
|
| 140 |
+
examples=examples,
|
| 141 |
+
allow_screenshot=args.allow_screenshot,
|
| 142 |
+
allow_flagging=args.allow_flagging,
|
| 143 |
+
live=args.live,
|
| 144 |
+
).launch(
|
| 145 |
+
enable_queue=args.enable_queue,
|
| 146 |
+
server_port=args.port,
|
| 147 |
+
share=args.share,
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
if __name__ == '__main__':
|
| 152 |
+
main()
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pillow>=9.0.0
|
| 2 |
+
tensorflow>=2.7.0
|