File size: 12,357 Bytes
b2c1c6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import os
import numpy as np
import torch
import gradio
import functools
from reloc3r.utils.image import parse_video, load_images, check_images_shape_format
from reloc3r.reloc3r_relpose import setup_reloc3r_relpose_model, inference_relpose
from reloc3r.utils.device import to_numpy
import cv2
import trimesh
import PIL
from scipy.spatial.transform import Rotation
from pdb import set_trace as bb

# from dust3r
OPENGL = np.array([[1, 0, 0, 0],
                   [0, -1, 0, 0],
                   [0, 0, -1, 0],
                   [0, 0, 0, 1]])

# func from dust3r
def geotrf(Trf, pts, ncol=None, norm=False):  
    """ Apply a geometric transformation to a list of 3-D points.

    H: 3x3 or 4x4 projection matrix (typically a Homography)
    p: numpy/torch/tuple of coordinates. Shape must be (...,2) or (...,3)

    ncol: int. number of columns of the result (2 or 3)
    norm: float. if != 0, the resut is projected on the z=norm plane.

    Returns an array of projected 2d points.
    """
    assert Trf.ndim >= 2
    if isinstance(Trf, np.ndarray):
        pts = np.asarray(pts)
    elif isinstance(Trf, torch.Tensor):
        pts = torch.as_tensor(pts, dtype=Trf.dtype)

    # adapt shape if necessary
    output_reshape = pts.shape[:-1]
    ncol = ncol or pts.shape[-1]

    # optimized code
    if (isinstance(Trf, torch.Tensor) and isinstance(pts, torch.Tensor) and
            Trf.ndim == 3 and pts.ndim == 4):
        d = pts.shape[3]
        if Trf.shape[-1] == d:
            pts = torch.einsum("bij, bhwj -> bhwi", Trf, pts)
        elif Trf.shape[-1] == d + 1:
            pts = torch.einsum("bij, bhwj -> bhwi", Trf[:, :d, :d], pts) + Trf[:, None, None, :d, d]
        else:
            raise ValueError(f'bad shape, not ending with 3 or 4, for {pts.shape=}')
    else:
        if Trf.ndim >= 3:
            n = Trf.ndim - 2
            assert Trf.shape[:n] == pts.shape[:n], 'batch size does not match'
            Trf = Trf.reshape(-1, Trf.shape[-2], Trf.shape[-1])

            if pts.ndim > Trf.ndim:
                # Trf == (B,d,d) & pts == (B,H,W,d) --> (B, H*W, d)
                pts = pts.reshape(Trf.shape[0], -1, pts.shape[-1])
            elif pts.ndim == 2:
                # Trf == (B,d,d) & pts == (B,d) --> (B, 1, d)
                pts = pts[:, None, :]

        if pts.shape[-1] + 1 == Trf.shape[-1]:
            Trf = Trf.swapaxes(-1, -2)  # transpose Trf
            pts = pts @ Trf[..., :-1, :] + Trf[..., -1:, :]
        elif pts.shape[-1] == Trf.shape[-1]:
            Trf = Trf.swapaxes(-1, -2)  # transpose Trf
            pts = pts @ Trf
        else:
            pts = Trf @ pts.T
            if pts.ndim >= 2:
                pts = pts.swapaxes(-1, -2)

    if norm:
        pts = pts / pts[..., -1:]  # DONT DO /= BECAUSE OF WEIRD PYTORCH BUG
        if norm != 1:
            pts *= norm

    res = pts[..., :ncol].reshape(*output_reshape, ncol)
    return res

# func from dust3r
def add_scene_cam(scene, pose_c2w, edge_color, image=None, focal=None, imsize=None, screen_width=0.11, marker=None):
    if image is not None:
        image = np.asarray(image)
        H, W, THREE = image.shape
        assert THREE == 3
        if image.dtype != np.uint8:
            image = np.uint8(255*image)
    elif imsize is not None:
        W, H = imsize
    elif focal is not None:
        H = W = focal / 1.1
    else:
        H = W = 1

    if isinstance(focal, np.ndarray):
        focal = focal[0]
    if not focal:
        focal = min(H,W) * 1.1 # default value

    # create fake camera
    height = max( screen_width/10, focal * screen_width / H )
    width = screen_width * 0.5**0.5
    rot45 = np.eye(4)
    rot45[:3, :3] = Rotation.from_euler('z', np.deg2rad(45)).as_matrix()
    rot45[2, 3] = -height  # set the tip of the cone = optical center
    aspect_ratio = np.eye(4)
    aspect_ratio[0, 0] = W/H
    transform = pose_c2w @ OPENGL @ aspect_ratio @ rot45
    cam = trimesh.creation.cone(width, height, sections=4)  # , transform=transform)

    # this is the image
    if image is not None:
        vertices = geotrf(transform, cam.vertices[[4, 5, 1, 3]])
        faces = np.array([[0, 1, 2], [0, 2, 3], [2, 1, 0], [3, 2, 0]])
        img = trimesh.Trimesh(vertices=vertices, faces=faces)
        uv_coords = np.float32([[0, 0], [1, 0], [1, 1], [0, 1]])
        img.visual = trimesh.visual.TextureVisuals(uv_coords, image=PIL.Image.fromarray(image))
        scene.add_geometry(img)

    # this is the camera mesh
    rot2 = np.eye(4)
    rot2[:3, :3] = Rotation.from_euler('z', np.deg2rad(2)).as_matrix()
    vertices = np.r_[cam.vertices, 0.95*cam.vertices, geotrf(rot2, cam.vertices)]
    vertices = geotrf(transform, vertices)
    faces = []
    for face in cam.faces:
        if 0 in face:
            continue
        a, b, c = face
        a2, b2, c2 = face + len(cam.vertices)
        a3, b3, c3 = face + 2*len(cam.vertices)

        # add 3 pseudo-edges
        faces.append((a, b, b2))
        faces.append((a, a2, c))
        faces.append((c2, b, c))

        faces.append((a, b, b3))
        faces.append((a, a3, c))
        faces.append((c3, b, c))

    # no culling
    faces += [(c, b, a) for a, b, c in faces]

    cam = trimesh.Trimesh(vertices=vertices, faces=faces)
    cam.visual.face_colors[:, :3] = edge_color
    scene.add_geometry(cam)

    if marker == 'o':
        marker = trimesh.creation.icosphere(3, radius=screen_width/4)
        marker.vertices += pose_c2w[:3,3]
        marker.visual.face_colors[:,:3] = edge_color
        scene.add_geometry(marker)

# save relpose to .glb file
def vis_pose2to1(pose2to1, images):
    poses = [np.identity(4), pose2to1]
    colors = [(255, 0, 0), (0, 0, 255)]
    scene = trimesh.Scene()
    # add each camera
    for i, pose_c2w in enumerate(poses):
        camera_edge_color = colors[i]
        add_scene_cam(scene, pose_c2w, camera_edge_color, images[i])
    
    # coord transform for vis
    rot = np.eye(4)
    rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix()
    scene.apply_transform(np.linalg.inv(poses[0] @ OPENGL @ rot))
    
    path = '_tmp_vis/scene.glb'
    scene.export(file_obj=path)
    print('Scene saved to', path)
    return path

# draw matches in images
def vis_ca_match(img1, img2, ca2to1_path, topkq=5, topkk=4):
    img1 = np.ascontiguousarray(img1)
    img2 = np.ascontiguousarray(img2)
    attn_map = np.loadtxt(ca2to1_path)

    h1, w1, _ = img1.shape
    h2, w2, _ = img2.shape
    assert w1 == w2
    hp1, wp1 = h1//16, w1//16
    hp2, wp2 = h2//16, w2//16

    vis = np.concatenate((img1, img2), axis=0)
    alpha = 0.5 
    overlay = vis.copy()
    overlay[:,:] = (255, 255, 255)
    cv2.addWeighted(overlay, alpha, vis, 1 - alpha, 0, vis)

    cv2.rectangle(vis, (1, 1), (w1-2, h1-2), color=(255, 0, 0, 255), thickness=1, lineType=cv2.LINE_AA) 
    cv2.rectangle(vis, (1, h1+1), (w2-2, h1+h2-2), color=(0, 0, 255, 255), thickness=1, lineType=cv2.LINE_AA) 
    colors = [(245, 67, 62, 255), (93, 141, 253, 255), (94, 128, 64, 255), (245, 168, 61, 255), (0, 0, 0, 255)]

    def find_top_k_indices(arr, k):
        sorted_indices = np.argsort(arr)
        top_k_indices = sorted_indices[-k:]
        return top_k_indices

    # select topkq responses
    response_list = []
    for id_v2 in range(attn_map.shape[0]):
        out_of_bound = False
        topk_list = find_top_k_indices(attn_map[id_v2], k=topkk)
        response = attn_map[id_v2][topk_list].mean()
        response_list.append(response)
        for id_v1 in topk_list:
            y_v1 = (id_v1//wp1)*16
            x_v1 = (id_v1%wp1)*16
            if x_v1 ==0 or x_v1 ==w1-16:
                out_of_bound = True
            if y_v1 ==0 or y_v1 ==h1-16:
                out_of_bound = True
        if out_of_bound:
            response_list[-1] = 0
            continue
    top_match_ids = np.argsort(response_list)[-topkq:]

    # draw the responses as matches
    for i in range(len(top_match_ids)):
        id_v2 = top_match_ids[i]
        color = colors[i] if i < len(colors) else colors[-1]

        # query
        y_v2 = (id_v2//wp2)*16
        x_v2 = (id_v2%wp2)*16
        overlay = np.zeros_like(vis)
        cv2.rectangle(vis, (x_v2, y_v2+h1), (x_v2+15, y_v2+h1+15), color=color, thickness=1, lineType=cv2.LINE_AA)  

        # keys
        topk_list = find_top_k_indices(attn_map[id_v2], k=topkk)
        for id_v1 in topk_list: 
            y_v1 = (id_v1//wp1)*16
            x_v1 = (id_v1%wp1)*16   
            cv2.rectangle(vis, (x_v1, y_v1), (x_v1+15, y_v1+15), color=color, thickness=1, lineType=cv2.LINE_AA)  

        # lines
        for id_v1 in topk_list:
            y_v1 = (id_v1//wp1)*16
            x_v1 = (id_v1%wp1)*16
            cv2.line(vis, (x_v1+7, y_v1+7), (x_v2+7, y_v2+h1+7), color=color, thickness=1, lineType=cv2.LINE_AA)  
    
    return vis

# run the whole process
def run_reloc3r_rpr(reloc3r_relpose, img_reso, device, 
                    imgs):
    
    if not len(imgs) == 2:
        print('There are >2 images uploaded, running with the first 2 images...')

    # load images
    print('Loading images...')
    images = load_images(imgs[0:2], size=int(img_reso))
    images = check_images_shape_format(images, device)
    img1 = ((images[0]['img'].detach().cpu().numpy().squeeze().transpose(1,2,0) + 1) / 2 * 255).astype(np.uint8)
    img2 = ((images[1]['img'].detach().cpu().numpy().squeeze().transpose(1,2,0) + 1) / 2 * 255).astype(np.uint8)

    # estimate relpose
    print('Running relative pose estimation...')
    batch = [images[0], images[1]]
    pose2to1 = to_numpy(inference_relpose(batch, reloc3r_relpose, device)[0])
    pose2to1[0:3,3] = pose2to1[0:3,3] / np.linalg.norm(pose2to1[0:3,3])  # normalize the scale to 1 meter
    pose_vis = vis_pose2to1(pose2to1, [img1, img2])
    path = '_tmp_vis/pose2to1.txt'
    np.savetxt(path, pose2to1)
    print('Pose saved to', path)

    # patch matches from cross-attn
    print('Visualizing patch matches...')
    block_id = 5
    head_id = 0
    match_vis = vis_ca_match(img1, img2, '_tmp_vis/_ca_block{}_head{}.txt'.format(block_id, head_id)) 
    path = '_tmp_vis/match.png'
    cv2.imwrite(path, match_vis[:,:,[2,1,0]])
    print('Match visualization saved to', path)

    return pose_vis, [match_vis]

# gradio interface
def main_demo(reloc3r_relpose, device, img_reso, server_name, server_port): 
    run = functools.partial(run_reloc3r_rpr, reloc3r_relpose, img_reso, device)
    with gradio.Blocks(css=""".gradio-container {margin: 0 !important; min-width: 100%};""", title="Reloc3r relative camera pose demo") as demo:
        gradio.HTML('<h2 style="text-align: center;">Reloc3r relative camera pose demo</h2>')
        # components
        with gradio.Row():
            with gradio.Column():
                inputfiles = gradio.File(file_count="multiple", file_types=["image"],
                                         scale=2,
                                         height=200,
                                         label="Upload a pair of images")
                run_btn = gradio.Button("Run")
            outmodel = gradio.Model3D(camera_position=(-90, 45, 2),
                                      height=400,
                                      label="Camera poses")
            outgallery = gradio.Gallery(preview=True, 
                                        height=400, 
                                        label="Cross-attention responses (top-5 queries with top-4 keys)")
        # events
        run_btn.click(fn=run,
                      inputs=[inputfiles],
                      outputs=[outmodel, outgallery])
    # demo.launch(share=False, server_name=server_name, server_port=server_port)
    demo.launch()


if __name__ == '__main__':
    print('Note: This demo runs slowly because it operates on CPU and saves intermediate data.')

    os.environ["GRADIO_TEMP_DIR"] = '_tmp_gradio'
    if not os.path.exists('_tmp_gradio'):
        os.mkdir('_tmp_gradio')
    if not os.path.exists('_tmp_vis'):
        os.mkdir('_tmp_vis')

    server_name = '127.0.0.1'
    server_port = 7867

    img_reso = '512'
    device = 'cpu'
    device = torch.device(device)

    print('Loading Reloc3r-512 RPR model...')
    reloc3r_relpose = setup_reloc3r_relpose_model(model_args=img_reso, device=device)
    
    main_demo(reloc3r_relpose, device, img_reso, server_name, server_port)