Spaces:
Running
Running
File size: 12,357 Bytes
b2c1c6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
import os
import numpy as np
import torch
import gradio
import functools
from reloc3r.utils.image import parse_video, load_images, check_images_shape_format
from reloc3r.reloc3r_relpose import setup_reloc3r_relpose_model, inference_relpose
from reloc3r.utils.device import to_numpy
import cv2
import trimesh
import PIL
from scipy.spatial.transform import Rotation
from pdb import set_trace as bb
# from dust3r
OPENGL = np.array([[1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, -1, 0],
[0, 0, 0, 1]])
# func from dust3r
def geotrf(Trf, pts, ncol=None, norm=False):
""" Apply a geometric transformation to a list of 3-D points.
H: 3x3 or 4x4 projection matrix (typically a Homography)
p: numpy/torch/tuple of coordinates. Shape must be (...,2) or (...,3)
ncol: int. number of columns of the result (2 or 3)
norm: float. if != 0, the resut is projected on the z=norm plane.
Returns an array of projected 2d points.
"""
assert Trf.ndim >= 2
if isinstance(Trf, np.ndarray):
pts = np.asarray(pts)
elif isinstance(Trf, torch.Tensor):
pts = torch.as_tensor(pts, dtype=Trf.dtype)
# adapt shape if necessary
output_reshape = pts.shape[:-1]
ncol = ncol or pts.shape[-1]
# optimized code
if (isinstance(Trf, torch.Tensor) and isinstance(pts, torch.Tensor) and
Trf.ndim == 3 and pts.ndim == 4):
d = pts.shape[3]
if Trf.shape[-1] == d:
pts = torch.einsum("bij, bhwj -> bhwi", Trf, pts)
elif Trf.shape[-1] == d + 1:
pts = torch.einsum("bij, bhwj -> bhwi", Trf[:, :d, :d], pts) + Trf[:, None, None, :d, d]
else:
raise ValueError(f'bad shape, not ending with 3 or 4, for {pts.shape=}')
else:
if Trf.ndim >= 3:
n = Trf.ndim - 2
assert Trf.shape[:n] == pts.shape[:n], 'batch size does not match'
Trf = Trf.reshape(-1, Trf.shape[-2], Trf.shape[-1])
if pts.ndim > Trf.ndim:
# Trf == (B,d,d) & pts == (B,H,W,d) --> (B, H*W, d)
pts = pts.reshape(Trf.shape[0], -1, pts.shape[-1])
elif pts.ndim == 2:
# Trf == (B,d,d) & pts == (B,d) --> (B, 1, d)
pts = pts[:, None, :]
if pts.shape[-1] + 1 == Trf.shape[-1]:
Trf = Trf.swapaxes(-1, -2) # transpose Trf
pts = pts @ Trf[..., :-1, :] + Trf[..., -1:, :]
elif pts.shape[-1] == Trf.shape[-1]:
Trf = Trf.swapaxes(-1, -2) # transpose Trf
pts = pts @ Trf
else:
pts = Trf @ pts.T
if pts.ndim >= 2:
pts = pts.swapaxes(-1, -2)
if norm:
pts = pts / pts[..., -1:] # DONT DO /= BECAUSE OF WEIRD PYTORCH BUG
if norm != 1:
pts *= norm
res = pts[..., :ncol].reshape(*output_reshape, ncol)
return res
# func from dust3r
def add_scene_cam(scene, pose_c2w, edge_color, image=None, focal=None, imsize=None, screen_width=0.11, marker=None):
if image is not None:
image = np.asarray(image)
H, W, THREE = image.shape
assert THREE == 3
if image.dtype != np.uint8:
image = np.uint8(255*image)
elif imsize is not None:
W, H = imsize
elif focal is not None:
H = W = focal / 1.1
else:
H = W = 1
if isinstance(focal, np.ndarray):
focal = focal[0]
if not focal:
focal = min(H,W) * 1.1 # default value
# create fake camera
height = max( screen_width/10, focal * screen_width / H )
width = screen_width * 0.5**0.5
rot45 = np.eye(4)
rot45[:3, :3] = Rotation.from_euler('z', np.deg2rad(45)).as_matrix()
rot45[2, 3] = -height # set the tip of the cone = optical center
aspect_ratio = np.eye(4)
aspect_ratio[0, 0] = W/H
transform = pose_c2w @ OPENGL @ aspect_ratio @ rot45
cam = trimesh.creation.cone(width, height, sections=4) # , transform=transform)
# this is the image
if image is not None:
vertices = geotrf(transform, cam.vertices[[4, 5, 1, 3]])
faces = np.array([[0, 1, 2], [0, 2, 3], [2, 1, 0], [3, 2, 0]])
img = trimesh.Trimesh(vertices=vertices, faces=faces)
uv_coords = np.float32([[0, 0], [1, 0], [1, 1], [0, 1]])
img.visual = trimesh.visual.TextureVisuals(uv_coords, image=PIL.Image.fromarray(image))
scene.add_geometry(img)
# this is the camera mesh
rot2 = np.eye(4)
rot2[:3, :3] = Rotation.from_euler('z', np.deg2rad(2)).as_matrix()
vertices = np.r_[cam.vertices, 0.95*cam.vertices, geotrf(rot2, cam.vertices)]
vertices = geotrf(transform, vertices)
faces = []
for face in cam.faces:
if 0 in face:
continue
a, b, c = face
a2, b2, c2 = face + len(cam.vertices)
a3, b3, c3 = face + 2*len(cam.vertices)
# add 3 pseudo-edges
faces.append((a, b, b2))
faces.append((a, a2, c))
faces.append((c2, b, c))
faces.append((a, b, b3))
faces.append((a, a3, c))
faces.append((c3, b, c))
# no culling
faces += [(c, b, a) for a, b, c in faces]
cam = trimesh.Trimesh(vertices=vertices, faces=faces)
cam.visual.face_colors[:, :3] = edge_color
scene.add_geometry(cam)
if marker == 'o':
marker = trimesh.creation.icosphere(3, radius=screen_width/4)
marker.vertices += pose_c2w[:3,3]
marker.visual.face_colors[:,:3] = edge_color
scene.add_geometry(marker)
# save relpose to .glb file
def vis_pose2to1(pose2to1, images):
poses = [np.identity(4), pose2to1]
colors = [(255, 0, 0), (0, 0, 255)]
scene = trimesh.Scene()
# add each camera
for i, pose_c2w in enumerate(poses):
camera_edge_color = colors[i]
add_scene_cam(scene, pose_c2w, camera_edge_color, images[i])
# coord transform for vis
rot = np.eye(4)
rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix()
scene.apply_transform(np.linalg.inv(poses[0] @ OPENGL @ rot))
path = '_tmp_vis/scene.glb'
scene.export(file_obj=path)
print('Scene saved to', path)
return path
# draw matches in images
def vis_ca_match(img1, img2, ca2to1_path, topkq=5, topkk=4):
img1 = np.ascontiguousarray(img1)
img2 = np.ascontiguousarray(img2)
attn_map = np.loadtxt(ca2to1_path)
h1, w1, _ = img1.shape
h2, w2, _ = img2.shape
assert w1 == w2
hp1, wp1 = h1//16, w1//16
hp2, wp2 = h2//16, w2//16
vis = np.concatenate((img1, img2), axis=0)
alpha = 0.5
overlay = vis.copy()
overlay[:,:] = (255, 255, 255)
cv2.addWeighted(overlay, alpha, vis, 1 - alpha, 0, vis)
cv2.rectangle(vis, (1, 1), (w1-2, h1-2), color=(255, 0, 0, 255), thickness=1, lineType=cv2.LINE_AA)
cv2.rectangle(vis, (1, h1+1), (w2-2, h1+h2-2), color=(0, 0, 255, 255), thickness=1, lineType=cv2.LINE_AA)
colors = [(245, 67, 62, 255), (93, 141, 253, 255), (94, 128, 64, 255), (245, 168, 61, 255), (0, 0, 0, 255)]
def find_top_k_indices(arr, k):
sorted_indices = np.argsort(arr)
top_k_indices = sorted_indices[-k:]
return top_k_indices
# select topkq responses
response_list = []
for id_v2 in range(attn_map.shape[0]):
out_of_bound = False
topk_list = find_top_k_indices(attn_map[id_v2], k=topkk)
response = attn_map[id_v2][topk_list].mean()
response_list.append(response)
for id_v1 in topk_list:
y_v1 = (id_v1//wp1)*16
x_v1 = (id_v1%wp1)*16
if x_v1 ==0 or x_v1 ==w1-16:
out_of_bound = True
if y_v1 ==0 or y_v1 ==h1-16:
out_of_bound = True
if out_of_bound:
response_list[-1] = 0
continue
top_match_ids = np.argsort(response_list)[-topkq:]
# draw the responses as matches
for i in range(len(top_match_ids)):
id_v2 = top_match_ids[i]
color = colors[i] if i < len(colors) else colors[-1]
# query
y_v2 = (id_v2//wp2)*16
x_v2 = (id_v2%wp2)*16
overlay = np.zeros_like(vis)
cv2.rectangle(vis, (x_v2, y_v2+h1), (x_v2+15, y_v2+h1+15), color=color, thickness=1, lineType=cv2.LINE_AA)
# keys
topk_list = find_top_k_indices(attn_map[id_v2], k=topkk)
for id_v1 in topk_list:
y_v1 = (id_v1//wp1)*16
x_v1 = (id_v1%wp1)*16
cv2.rectangle(vis, (x_v1, y_v1), (x_v1+15, y_v1+15), color=color, thickness=1, lineType=cv2.LINE_AA)
# lines
for id_v1 in topk_list:
y_v1 = (id_v1//wp1)*16
x_v1 = (id_v1%wp1)*16
cv2.line(vis, (x_v1+7, y_v1+7), (x_v2+7, y_v2+h1+7), color=color, thickness=1, lineType=cv2.LINE_AA)
return vis
# run the whole process
def run_reloc3r_rpr(reloc3r_relpose, img_reso, device,
imgs):
if not len(imgs) == 2:
print('There are >2 images uploaded, running with the first 2 images...')
# load images
print('Loading images...')
images = load_images(imgs[0:2], size=int(img_reso))
images = check_images_shape_format(images, device)
img1 = ((images[0]['img'].detach().cpu().numpy().squeeze().transpose(1,2,0) + 1) / 2 * 255).astype(np.uint8)
img2 = ((images[1]['img'].detach().cpu().numpy().squeeze().transpose(1,2,0) + 1) / 2 * 255).astype(np.uint8)
# estimate relpose
print('Running relative pose estimation...')
batch = [images[0], images[1]]
pose2to1 = to_numpy(inference_relpose(batch, reloc3r_relpose, device)[0])
pose2to1[0:3,3] = pose2to1[0:3,3] / np.linalg.norm(pose2to1[0:3,3]) # normalize the scale to 1 meter
pose_vis = vis_pose2to1(pose2to1, [img1, img2])
path = '_tmp_vis/pose2to1.txt'
np.savetxt(path, pose2to1)
print('Pose saved to', path)
# patch matches from cross-attn
print('Visualizing patch matches...')
block_id = 5
head_id = 0
match_vis = vis_ca_match(img1, img2, '_tmp_vis/_ca_block{}_head{}.txt'.format(block_id, head_id))
path = '_tmp_vis/match.png'
cv2.imwrite(path, match_vis[:,:,[2,1,0]])
print('Match visualization saved to', path)
return pose_vis, [match_vis]
# gradio interface
def main_demo(reloc3r_relpose, device, img_reso, server_name, server_port):
run = functools.partial(run_reloc3r_rpr, reloc3r_relpose, img_reso, device)
with gradio.Blocks(css=""".gradio-container {margin: 0 !important; min-width: 100%};""", title="Reloc3r relative camera pose demo") as demo:
gradio.HTML('<h2 style="text-align: center;">Reloc3r relative camera pose demo</h2>')
# components
with gradio.Row():
with gradio.Column():
inputfiles = gradio.File(file_count="multiple", file_types=["image"],
scale=2,
height=200,
label="Upload a pair of images")
run_btn = gradio.Button("Run")
outmodel = gradio.Model3D(camera_position=(-90, 45, 2),
height=400,
label="Camera poses")
outgallery = gradio.Gallery(preview=True,
height=400,
label="Cross-attention responses (top-5 queries with top-4 keys)")
# events
run_btn.click(fn=run,
inputs=[inputfiles],
outputs=[outmodel, outgallery])
# demo.launch(share=False, server_name=server_name, server_port=server_port)
demo.launch()
if __name__ == '__main__':
print('Note: This demo runs slowly because it operates on CPU and saves intermediate data.')
os.environ["GRADIO_TEMP_DIR"] = '_tmp_gradio'
if not os.path.exists('_tmp_gradio'):
os.mkdir('_tmp_gradio')
if not os.path.exists('_tmp_vis'):
os.mkdir('_tmp_vis')
server_name = '127.0.0.1'
server_port = 7867
img_reso = '512'
device = 'cpu'
device = torch.device(device)
print('Loading Reloc3r-512 RPR model...')
reloc3r_relpose = setup_reloc3r_relpose_model(model_args=img_reso, device=device)
main_demo(reloc3r_relpose, device, img_reso, server_name, server_port)
|