|
import re |
|
|
|
from smolagents.agent_types import AgentAudio, AgentImage, AgentText |
|
from smolagents.agents import PlanningStep |
|
from smolagents.gradio_ui import get_step_footnote_content |
|
from smolagents.memory import ActionStep, FinalAnswerStep, MemoryStep |
|
from smolagents.models import ChatMessageStreamDelta |
|
from smolagents.utils import _is_package_available |
|
|
|
|
|
def pull_messages_from_step(step_log: MemoryStep, skip_model_outputs: bool = False): |
|
"""Extract ChatMessage objects from agent steps with proper nesting. |
|
|
|
Args: |
|
step_log: The step log to display as gr.ChatMessage objects. |
|
skip_model_outputs: If True, skip the model outputs when creating the gr.ChatMessage objects: |
|
This is used for instance when streaming model outputs have already been displayed. |
|
""" |
|
if not _is_package_available("gradio"): |
|
raise ModuleNotFoundError( |
|
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`" |
|
) |
|
import gradio as gr |
|
|
|
if isinstance(step_log, ActionStep): |
|
|
|
step_number = ( |
|
f"Step {step_log.step_number}" |
|
if step_log.step_number is not None |
|
else "Step" |
|
) |
|
if not skip_model_outputs: |
|
yield gr.ChatMessage( |
|
role="assistant", |
|
content=f"**{step_number}**", |
|
metadata={"status": "done"}, |
|
) |
|
|
|
|
|
if ( |
|
not skip_model_outputs |
|
and hasattr(step_log, "model_output") |
|
and step_log.model_output is not None |
|
): |
|
model_output = step_log.model_output.strip() |
|
|
|
model_output = re.sub( |
|
r"```\s*<end_code>", "```", model_output |
|
) |
|
model_output = re.sub( |
|
r"<end_code>\s*```", "```", model_output |
|
) |
|
model_output = re.sub( |
|
r"```\s*\n\s*<end_code>", "```", model_output |
|
) |
|
model_output = model_output.strip() |
|
yield gr.ChatMessage( |
|
role="assistant", content=model_output, metadata={"status": "done"} |
|
) |
|
|
|
|
|
if hasattr(step_log, "tool_calls") and step_log.tool_calls is not None: |
|
first_tool_call = step_log.tool_calls[0] |
|
used_code = first_tool_call.name == "python_interpreter" |
|
|
|
|
|
|
|
args = first_tool_call.arguments |
|
if isinstance(args, dict): |
|
content = str(args.get("answer", str(args))) |
|
else: |
|
content = str(args).strip() |
|
|
|
if used_code: |
|
|
|
content = re.sub( |
|
r"```.*?\n", "", content |
|
) |
|
content = re.sub( |
|
r"\s*<end_code>\s*", "", content |
|
) |
|
content = content.strip() |
|
if not content.startswith("```python"): |
|
content = f"```python\n{content}\n```" |
|
|
|
parent_message_tool = gr.ChatMessage( |
|
role="assistant", |
|
content=content, |
|
metadata={ |
|
"title": f"🛠️ Used tool {first_tool_call.name}", |
|
"status": "done", |
|
}, |
|
) |
|
yield parent_message_tool |
|
|
|
|
|
if hasattr(step_log, "observations") and ( |
|
step_log.observations is not None and step_log.observations.strip() |
|
): |
|
log_content = step_log.observations.strip() |
|
if log_content: |
|
log_content = re.sub(r"^Execution logs:\s*", "", log_content) |
|
yield gr.ChatMessage( |
|
role="assistant", |
|
content=f"```bash\n{log_content}\n", |
|
metadata={"title": "📝 Execution Logs", "status": "done"}, |
|
) |
|
|
|
|
|
if hasattr(step_log, "error") and step_log.error is not None: |
|
yield gr.ChatMessage( |
|
role="assistant", |
|
content=str(step_log.error), |
|
metadata={"title": "💥 Error", "status": "done"}, |
|
) |
|
|
|
|
|
if getattr(step_log, "observations_images", []): |
|
for image in step_log.observations_images: |
|
path_image = AgentImage(image).to_string() |
|
yield gr.ChatMessage( |
|
role="assistant", |
|
content={ |
|
"path": path_image, |
|
"mime_type": f"image/{path_image.split('.')[-1]}", |
|
}, |
|
metadata={"title": "🖼️ Output Image", "status": "done"}, |
|
) |
|
|
|
|
|
if hasattr(step_log, "error") and step_log.error is not None: |
|
yield gr.ChatMessage( |
|
role="assistant", |
|
content=str(step_log.error), |
|
metadata={"title": "💥 Error", "status": "done"}, |
|
) |
|
|
|
yield gr.ChatMessage( |
|
role="assistant", |
|
content=get_step_footnote_content(step_log, step_number), |
|
metadata={"status": "done"}, |
|
) |
|
yield gr.ChatMessage( |
|
role="assistant", content="-----", metadata={"status": "done"} |
|
) |
|
|
|
elif isinstance(step_log, PlanningStep): |
|
yield gr.ChatMessage( |
|
role="assistant", content="**Planning step**", metadata={"status": "done"} |
|
) |
|
yield gr.ChatMessage( |
|
role="assistant", content=step_log.plan, metadata={"status": "done"} |
|
) |
|
yield gr.ChatMessage( |
|
role="assistant", |
|
content=get_step_footnote_content(step_log, "Planning step"), |
|
metadata={"status": "done"}, |
|
) |
|
yield gr.ChatMessage( |
|
role="assistant", content="-----", metadata={"status": "done"} |
|
) |
|
|
|
elif isinstance(step_log, FinalAnswerStep): |
|
final_answer = step_log.final_answer |
|
if isinstance(final_answer, AgentText): |
|
yield gr.ChatMessage( |
|
role="assistant", |
|
content=f"**Final answer:**\n{final_answer.to_string()}\n", |
|
metadata={"status": "done"}, |
|
) |
|
elif isinstance(final_answer, AgentImage): |
|
yield gr.ChatMessage( |
|
role="assistant", |
|
content={"path": final_answer.to_string(), "mime_type": "image/png"}, |
|
metadata={"status": "done"}, |
|
) |
|
elif isinstance(final_answer, AgentAudio): |
|
yield gr.ChatMessage( |
|
role="assistant", |
|
content={"path": final_answer.to_string(), "mime_type": "audio/wav"}, |
|
metadata={"status": "done"}, |
|
) |
|
else: |
|
yield gr.ChatMessage( |
|
role="assistant", |
|
content=f"**Final answer:** {str(final_answer)}", |
|
metadata={"status": "done"}, |
|
) |
|
|
|
else: |
|
raise ValueError(f"Unsupported step type: {type(step_log)}") |
|
|
|
|
|
def stream_to_gradio( |
|
agent, |
|
task: str, |
|
task_images: list | None = None, |
|
reset_agent_memory: bool = False, |
|
additional_args: dict | None = None, |
|
): |
|
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages.""" |
|
total_input_tokens = 0 |
|
total_output_tokens = 0 |
|
|
|
if not _is_package_available("gradio"): |
|
raise ModuleNotFoundError( |
|
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`" |
|
) |
|
|
|
intermediate_text = "" |
|
|
|
for step_log in agent.run( |
|
task, |
|
images=task_images, |
|
stream=True, |
|
reset=reset_agent_memory, |
|
additional_args=additional_args, |
|
): |
|
|
|
if getattr(agent.model, "last_input_token_count", None) is not None: |
|
total_input_tokens += agent.model.last_input_token_count |
|
total_output_tokens += agent.model.last_output_token_count |
|
if isinstance(step_log, (ActionStep, PlanningStep)): |
|
step_log.input_token_count = agent.model.last_input_token_count |
|
step_log.output_token_count = agent.model.last_output_token_count |
|
|
|
if isinstance(step_log, MemoryStep): |
|
intermediate_text = "" |
|
for message in pull_messages_from_step( |
|
step_log, |
|
|
|
skip_model_outputs=getattr(agent, "stream_outputs", False), |
|
): |
|
yield message |
|
elif isinstance(step_log, ChatMessageStreamDelta): |
|
intermediate_text += step_log.content or "" |
|
yield intermediate_text |
|
|