Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,10 @@
|
|
| 1 |
# --------------------------------------------------------------------------
|
| 2 |
-
# UNIFIED AI SERVICE V3.
|
| 3 |
# --------------------------------------------------------------------------
|
| 4 |
# This service uses DINOv2 for image embeddings and BGE for text embeddings.
|
| 5 |
-
#
|
| 6 |
-
#
|
| 7 |
-
#
|
| 8 |
-
# 3. Scores items based on a hybrid of text and image similarity.
|
| 9 |
# --------------------------------------------------------------------------
|
| 10 |
|
| 11 |
import sys
|
|
@@ -36,6 +35,12 @@ TEXT_FIELDS_TO_EMBED = ["brand", "material", "size", "colors"]
|
|
| 36 |
SCORE_WEIGHTS = { "text_score": 0.4, "image_score": 0.6 }
|
| 37 |
FINAL_SCORE_THRESHOLD = 0.5
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
print("="*50)
|
| 40 |
print("π Initializing AI Service with DINOv2...")
|
| 41 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
@@ -99,7 +104,6 @@ def cosine_similarity(vec1, vec2):
|
|
| 99 |
|
| 100 |
def segment_guided_object(image: Image.Image, object_label: str) -> Image.Image:
|
| 101 |
prompt = f"a {object_label}."
|
| 102 |
-
|
| 103 |
print(f" [Segment] Using simple prompt: '{prompt}'")
|
| 104 |
image_rgb = image.convert("RGB")
|
| 105 |
image_np = np.array(image_rgb)
|
|
@@ -130,13 +134,36 @@ def segment_guided_object(image: Image.Image, object_label: str) -> Image.Image:
|
|
| 130 |
|
| 131 |
return Image.fromarray(segmented_np, 'RGB')
|
| 132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
# ==========================================================================
|
| 134 |
# --- FLASK ENDPOINTS ---
|
| 135 |
# ==========================================================================
|
| 136 |
|
| 137 |
@app.route('/', methods=['GET'])
|
| 138 |
def health_check():
|
| 139 |
-
return jsonify({"status": "Unified AI Service
|
| 140 |
|
| 141 |
@app.route('/process', methods=['POST'])
|
| 142 |
def process_item():
|
|
@@ -162,6 +189,12 @@ def process_item():
|
|
| 162 |
image = Image.open(BytesIO(img_response.content))
|
| 163 |
|
| 164 |
segmented_image = segment_guided_object(image, data['objectName'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
embedding = get_image_embedding(segmented_image)
|
| 166 |
image_embeddings.append(embedding)
|
| 167 |
except Exception as e:
|
|
@@ -185,7 +218,6 @@ def compare_items():
|
|
| 185 |
search_list = payload['searchList']
|
| 186 |
print(f"\n[COMPARE] Received {len(search_list)} pre-filtered candidates for '{query_item.get('objectName')}'.")
|
| 187 |
|
| 188 |
-
# --- SCORING ---
|
| 189 |
results = []
|
| 190 |
for item in search_list:
|
| 191 |
item_id = item.get('_id')
|
|
@@ -207,18 +239,15 @@ def compare_items():
|
|
| 207 |
item_img_embs = item.get('image_embeddings', [])
|
| 208 |
if query_img_embs and item_img_embs:
|
| 209 |
all_img_scores = []
|
| 210 |
-
print(f" - Image Pair Scores:")
|
| 211 |
for i, q_emb in enumerate(query_img_embs):
|
| 212 |
for j, i_emb in enumerate(item_img_embs):
|
| 213 |
-
# Calculate the score for this specific pair
|
| 214 |
pair_score = cosine_similarity(q_emb, i_emb)
|
| 215 |
-
# Print the score for this pair
|
| 216 |
print(f" - Query Img {i+1} vs Item Img {j+1}: {pair_score:.4f}")
|
| 217 |
all_img_scores.append(pair_score)
|
| 218 |
if all_img_scores:
|
| 219 |
image_score = max(all_img_scores)
|
| 220 |
|
| 221 |
-
# Use a clearer label for the max score
|
| 222 |
print(f" - Max Image Score: {image_score:.4f}")
|
| 223 |
|
| 224 |
# 3. Calculate Final Score
|
|
|
|
| 1 |
# --------------------------------------------------------------------------
|
| 2 |
+
# UNIFIED AI SERVICE V3.2 (Debug Uploads & Refactored)
|
| 3 |
# --------------------------------------------------------------------------
|
| 4 |
# This service uses DINOv2 for image embeddings and BGE for text embeddings.
|
| 5 |
+
# - Filtering is handled by the Node.js backend.
|
| 6 |
+
# - For debugging, segmented images are uploaded to Uploadcare and the URL
|
| 7 |
+
# is printed to the console log.
|
|
|
|
| 8 |
# --------------------------------------------------------------------------
|
| 9 |
|
| 10 |
import sys
|
|
|
|
| 35 |
SCORE_WEIGHTS = { "text_score": 0.4, "image_score": 0.6 }
|
| 36 |
FINAL_SCORE_THRESHOLD = 0.5
|
| 37 |
|
| 38 |
+
# --- Load Uploadcare Credentials from Environment Variables ---
|
| 39 |
+
# Make sure to set this as a Secret in your Hugging Face Space settings.
|
| 40 |
+
UPLOADCARE_PUBLIC_KEY = os.getenv('UPLOADCARE_PUBLIC_KEY')
|
| 41 |
+
if not UPLOADCARE_PUBLIC_KEY:
|
| 42 |
+
print("β οΈ WARNING: UPLOADCARE_PUBLIC_KEY environment variable not set. Debug uploads will fail.")
|
| 43 |
+
|
| 44 |
print("="*50)
|
| 45 |
print("π Initializing AI Service with DINOv2...")
|
| 46 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
| 104 |
|
| 105 |
def segment_guided_object(image: Image.Image, object_label: str) -> Image.Image:
|
| 106 |
prompt = f"a {object_label}."
|
|
|
|
| 107 |
print(f" [Segment] Using simple prompt: '{prompt}'")
|
| 108 |
image_rgb = image.convert("RGB")
|
| 109 |
image_np = np.array(image_rgb)
|
|
|
|
| 134 |
|
| 135 |
return Image.fromarray(segmented_np, 'RGB')
|
| 136 |
|
| 137 |
+
def upload_to_uploadcare(image: Image.Image) -> str:
|
| 138 |
+
"""Uploads a PIL Image to Uploadcare and returns the CDN URL."""
|
| 139 |
+
if not UPLOADCARE_PUBLIC_KEY:
|
| 140 |
+
return "UPLOADCARE_PUBLIC_KEY not configured."
|
| 141 |
+
|
| 142 |
+
try:
|
| 143 |
+
# Convert PIL Image to in-memory bytes buffer
|
| 144 |
+
buffer = BytesIO()
|
| 145 |
+
image.save(buffer, format='PNG')
|
| 146 |
+
buffer.seek(0)
|
| 147 |
+
|
| 148 |
+
files = { 'file': ('segmented_image.png', buffer, 'image/png') }
|
| 149 |
+
data = { 'UPLOADCARE_PUB_KEY': UPLOADCARE_PUBLIC_KEY, 'UPLOADCARE_STORE': '1' }
|
| 150 |
+
|
| 151 |
+
response = requests.post('https://upload.uploadcare.com/base/', files=files, data=data)
|
| 152 |
+
response.raise_for_status()
|
| 153 |
+
|
| 154 |
+
file_uuid = response.json().get('file')
|
| 155 |
+
cdn_url = f"https://ucarecdn.com/{file_uuid}/"
|
| 156 |
+
return cdn_url
|
| 157 |
+
except Exception as e:
|
| 158 |
+
return f"Uploadcare upload failed: {e}"
|
| 159 |
+
|
| 160 |
# ==========================================================================
|
| 161 |
# --- FLASK ENDPOINTS ---
|
| 162 |
# ==========================================================================
|
| 163 |
|
| 164 |
@app.route('/', methods=['GET'])
|
| 165 |
def health_check():
|
| 166 |
+
return jsonify({"status": "Unified AI Service is running"}), 200
|
| 167 |
|
| 168 |
@app.route('/process', methods=['POST'])
|
| 169 |
def process_item():
|
|
|
|
| 189 |
image = Image.open(BytesIO(img_response.content))
|
| 190 |
|
| 191 |
segmented_image = segment_guided_object(image, data['objectName'])
|
| 192 |
+
|
| 193 |
+
# --- DEBUGGING STEP: Upload segmented image and log the URL ---
|
| 194 |
+
debug_url = upload_to_uploadcare(segmented_image)
|
| 195 |
+
print(f" - π DEBUG URL: {debug_url}")
|
| 196 |
+
# -----------------------------------------------------------
|
| 197 |
+
|
| 198 |
embedding = get_image_embedding(segmented_image)
|
| 199 |
image_embeddings.append(embedding)
|
| 200 |
except Exception as e:
|
|
|
|
| 218 |
search_list = payload['searchList']
|
| 219 |
print(f"\n[COMPARE] Received {len(search_list)} pre-filtered candidates for '{query_item.get('objectName')}'.")
|
| 220 |
|
|
|
|
| 221 |
results = []
|
| 222 |
for item in search_list:
|
| 223 |
item_id = item.get('_id')
|
|
|
|
| 239 |
item_img_embs = item.get('image_embeddings', [])
|
| 240 |
if query_img_embs and item_img_embs:
|
| 241 |
all_img_scores = []
|
| 242 |
+
print(f" - Image Pair Scores:")
|
| 243 |
for i, q_emb in enumerate(query_img_embs):
|
| 244 |
for j, i_emb in enumerate(item_img_embs):
|
|
|
|
| 245 |
pair_score = cosine_similarity(q_emb, i_emb)
|
|
|
|
| 246 |
print(f" - Query Img {i+1} vs Item Img {j+1}: {pair_score:.4f}")
|
| 247 |
all_img_scores.append(pair_score)
|
| 248 |
if all_img_scores:
|
| 249 |
image_score = max(all_img_scores)
|
| 250 |
|
|
|
|
| 251 |
print(f" - Max Image Score: {image_score:.4f}")
|
| 252 |
|
| 253 |
# 3. Calculate Final Score
|