Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,10 +1,7 @@
|
|
| 1 |
-
import sys
|
| 2 |
-
sys.stdout.reconfigure(line_buffering=True)
|
| 3 |
-
|
| 4 |
# --------------------------------------------------------------------------
|
| 5 |
# UNIFIED AI SERVICE FOR LOST & FOUND V2
|
| 6 |
# --------------------------------------------------------------------------
|
| 7 |
-
# This Flask application combines two matching engines:
|
| 8 |
# 1. Text Engine: Analyzes structured text fields (brand, material, etc.)
|
| 9 |
# using text embeddings and specific comparison logic.
|
| 10 |
# 2. Image Engine: Analyzes multiple images per item by segmenting the
|
|
@@ -42,7 +39,7 @@ app = Flask(__name__)
|
|
| 42 |
TEXT_FIELD_WEIGHTS = { "brand": 1.0, "material": 1.0, "markings": 1.0, "colors": 1.0, "size": 1.0 }
|
| 43 |
TEXT_FIELDS_TO_EMBED = ["brand", "material", "markings"]
|
| 44 |
SCORE_WEIGHTS = { "text_score": 0.5, "image_score": 0.5 }
|
| 45 |
-
FINAL_SCORE_THRESHOLD = 0.55
|
| 46 |
|
| 47 |
# --- Model Loading ---
|
| 48 |
print("="*50)
|
|
@@ -77,8 +74,7 @@ print("="*50)
|
|
| 77 |
# ==========================================================================
|
| 78 |
|
| 79 |
# --- Text Processing Helpers ---
|
| 80 |
-
def get_text_embedding(text: str) ->
|
| 81 |
-
"""Generates a normalized embedding for a given text string."""
|
| 82 |
if not text or not text.strip(): return None
|
| 83 |
instruction = "Represent this sentence for searching relevant passages: "
|
| 84 |
inputs = tokenizer_text(instruction + text, return_tensors='pt', padding=True, truncation=True, max_length=512).to(device)
|
|
@@ -86,16 +82,14 @@ def get_text_embedding(text: str) -> np.ndarray:
|
|
| 86 |
outputs = model_text(**inputs)
|
| 87 |
embedding = outputs.last_hidden_state[:, 0, :]
|
| 88 |
embedding = torch.nn.functional.normalize(embedding, p=2, dim=1)
|
| 89 |
-
return embedding.cpu().numpy()[0]
|
| 90 |
|
| 91 |
def cosine_similarity(vec1, vec2):
|
| 92 |
-
"""Calculates cosine similarity between two vectors."""
|
| 93 |
if vec1 is None or vec2 is None: return 0.0
|
| 94 |
vec1, vec2 = np.array(vec1), np.array(vec2)
|
| 95 |
return float(np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2)))
|
| 96 |
|
| 97 |
def calculate_color_similarity(colors1: list, colors2: list) -> float:
|
| 98 |
-
"""Calculates Jaccard similarity for two lists of colors."""
|
| 99 |
if not colors1 and not colors2: return 1.0
|
| 100 |
if not colors1 or not colors2: return 0.0
|
| 101 |
set1, set2 = set(c.lower() for c in colors1), set(c.lower() for c in colors2)
|
|
@@ -105,7 +99,6 @@ def calculate_color_similarity(colors1: list, colors2: list) -> float:
|
|
| 105 |
|
| 106 |
# --- Image Processing Helpers ---
|
| 107 |
def segment_guided_object(image: Image.Image, object_label: str) -> Image.Image:
|
| 108 |
-
"""Segments an object from an image using a text label."""
|
| 109 |
prompt = f"a {object_label}."
|
| 110 |
image_rgb = image.convert("RGB")
|
| 111 |
image_np = np.array(image_rgb)
|
|
@@ -120,10 +113,11 @@ def segment_guided_object(image: Image.Image, object_label: str) -> Image.Image:
|
|
| 120 |
)
|
| 121 |
|
| 122 |
if not results or len(results[0]['boxes']) == 0:
|
| 123 |
-
|
|
|
|
| 124 |
|
| 125 |
sam_predictor.set_image(image_np)
|
| 126 |
-
box = results[0]['boxes'][0].cpu().numpy().astype(int)
|
| 127 |
masks, _, _ = sam_predictor.predict(box=box, multimask_output=False)
|
| 128 |
|
| 129 |
mask = masks[0]
|
|
@@ -134,12 +128,10 @@ def segment_guided_object(image: Image.Image, object_label: str) -> Image.Image:
|
|
| 134 |
return Image.fromarray(object_rgba, 'RGBA')
|
| 135 |
|
| 136 |
def extract_visual_features(segmented_image_rgba: Image.Image) -> dict:
|
| 137 |
-
"""Extracts shape, color, and texture features from a segmented RGBA image."""
|
| 138 |
image_np = np.array(segmented_image_rgba)
|
| 139 |
bgr_image = cv2.cvtColor(image_np[:, :, :3], cv2.COLOR_RGB2BGR)
|
| 140 |
mask = image_np[:, :, 3]
|
| 141 |
|
| 142 |
-
# Shape Features (Hu Moments)
|
| 143 |
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 144 |
shape_features = np.zeros(7)
|
| 145 |
if contours:
|
|
@@ -149,11 +141,9 @@ def extract_visual_features(segmented_image_rgba: Image.Image) -> dict:
|
|
| 149 |
hu_moments = cv2.HuMoments(moments).flatten()
|
| 150 |
shape_features = -np.sign(hu_moments) * np.log10(np.abs(hu_moments) + 1e-7)
|
| 151 |
|
| 152 |
-
# Color Features (3D Histogram)
|
| 153 |
color_hist = cv2.calcHist([bgr_image], [0, 1, 2], mask, [8, 8, 8], [0, 256, 0, 256, 0, 256])
|
| 154 |
cv2.normalize(color_hist, color_hist)
|
| 155 |
|
| 156 |
-
# Texture Features (Local Binary Pattern)
|
| 157 |
gray_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2GRAY)
|
| 158 |
lbp = feature.local_binary_pattern(gray_image, P=24, R=3, method="uniform")
|
| 159 |
(texture_hist, _) = np.histogram(lbp[mask > 0], bins=np.arange(0, 27), range=(0, 26))
|
|
@@ -167,7 +157,6 @@ def extract_visual_features(segmented_image_rgba: Image.Image) -> dict:
|
|
| 167 |
}
|
| 168 |
|
| 169 |
def calculate_dynamic_weights(all_shape_scores, all_color_scores, stability_factor=0.4):
|
| 170 |
-
"""Calculates robust dynamic weights based on score dispersion."""
|
| 171 |
shape_scores, color_scores = np.array(all_shape_scores), np.array(all_color_scores)
|
| 172 |
|
| 173 |
def get_iqr(scores):
|
|
@@ -177,13 +166,10 @@ def calculate_dynamic_weights(all_shape_scores, all_color_scores, stability_fact
|
|
| 177 |
|
| 178 |
shape_dispersion = get_iqr(shape_scores)
|
| 179 |
color_dispersion = get_iqr(color_scores)
|
| 180 |
-
|
| 181 |
inv_shape_disp = 1 / (shape_dispersion + stability_factor)
|
| 182 |
inv_color_disp = 1 / (color_dispersion + stability_factor)
|
| 183 |
-
|
| 184 |
total_inv_disp = inv_shape_disp + inv_color_disp
|
| 185 |
-
|
| 186 |
-
remaining_weight = 0.8 # Texture is fixed at 0.2
|
| 187 |
|
| 188 |
shape_weight = remaining_weight * (inv_shape_disp / total_inv_disp) if total_inv_disp > 0 else remaining_weight / 2
|
| 189 |
color_weight = remaining_weight * (inv_color_disp / total_inv_disp) if total_inv_disp > 0 else remaining_weight / 2
|
|
@@ -200,40 +186,43 @@ def health_check():
|
|
| 200 |
|
| 201 |
@app.route('/process', methods=['POST'])
|
| 202 |
def process_item():
|
| 203 |
-
"""
|
| 204 |
-
Receives item data (text fields + image URLs) and returns a
|
| 205 |
-
JSON object enriched with all extracted AI features.
|
| 206 |
-
"""
|
| 207 |
try:
|
| 208 |
data = request.json
|
| 209 |
print(f"\n[PROCESS] Received request for object: {data.get('objectName')}")
|
| 210 |
|
| 211 |
# --- 1. Process Text Features ---
|
|
|
|
| 212 |
response = {
|
| 213 |
"canonicalLabel": data.get('objectName', '').lower().strip(),
|
| 214 |
"brand_embedding": get_text_embedding(data.get('brand')),
|
| 215 |
"material_embedding": get_text_embedding(data.get('material')),
|
| 216 |
"markings_embedding": get_text_embedding(data.get('markings'))
|
| 217 |
}
|
|
|
|
| 218 |
|
| 219 |
# --- 2. Process Image Features ---
|
| 220 |
visual_features_list = []
|
| 221 |
if data.get('images'):
|
| 222 |
-
|
|
|
|
| 223 |
try:
|
|
|
|
| 224 |
img_response = requests.get(image_url, timeout=20)
|
| 225 |
img_response.raise_for_status()
|
| 226 |
image = Image.open(BytesIO(img_response.content))
|
| 227 |
|
|
|
|
| 228 |
segmented_image = segment_guided_object(image, data['objectName'])
|
|
|
|
| 229 |
features = extract_visual_features(segmented_image)
|
| 230 |
visual_features_list.append(features)
|
|
|
|
| 231 |
except Exception as e:
|
| 232 |
-
print(f"
|
| 233 |
continue
|
| 234 |
|
| 235 |
response["visual_features"] = visual_features_list
|
| 236 |
-
print(f" [PROCESS] β
Successfully processed features.")
|
| 237 |
return jsonify(response), 200
|
| 238 |
|
| 239 |
except Exception as e:
|
|
@@ -243,10 +232,6 @@ def process_item():
|
|
| 243 |
|
| 244 |
@app.route('/compare', methods=['POST'])
|
| 245 |
def compare_items():
|
| 246 |
-
"""
|
| 247 |
-
Receives a query item and a list of search items, and returns
|
| 248 |
-
a list of potential matches based on a hybrid score.
|
| 249 |
-
"""
|
| 250 |
try:
|
| 251 |
payload = request.json
|
| 252 |
query_item = payload['queryItem']
|
|
@@ -255,11 +240,12 @@ def compare_items():
|
|
| 255 |
|
| 256 |
results = []
|
| 257 |
for item in search_list:
|
|
|
|
|
|
|
| 258 |
try:
|
| 259 |
# --- 1. Calculate Text Score ---
|
| 260 |
total_text_score, total_text_weight = 0, 0
|
| 261 |
|
| 262 |
-
# Compare embeddings
|
| 263 |
for field in TEXT_FIELDS_TO_EMBED:
|
| 264 |
q_emb = query_item.get(f"{field}_embedding")
|
| 265 |
i_emb = item.get(f"{field}_embedding")
|
|
@@ -269,21 +255,20 @@ def compare_items():
|
|
| 269 |
total_text_score += score * weight
|
| 270 |
total_text_weight += weight
|
| 271 |
|
| 272 |
-
# Compare colors
|
| 273 |
if query_item.get('colors'):
|
| 274 |
score = calculate_color_similarity(query_item['colors'], item.get('colors', []))
|
| 275 |
weight = TEXT_FIELD_WEIGHTS.get('colors', 0)
|
| 276 |
total_text_score += score * weight
|
| 277 |
total_text_weight += weight
|
| 278 |
|
| 279 |
-
# Compare size
|
| 280 |
if query_item.get('size'):
|
| 281 |
-
score = 1.0 if query_item
|
| 282 |
weight = TEXT_FIELD_WEIGHTS.get('size', 0)
|
| 283 |
total_text_score += score * weight
|
| 284 |
total_text_weight += weight
|
| 285 |
|
| 286 |
text_score = (total_text_score / total_text_weight) if total_text_weight > 0 else 0.0
|
|
|
|
| 287 |
|
| 288 |
# --- 2. Calculate Image Score ---
|
| 289 |
image_score = 0.0
|
|
@@ -292,15 +277,11 @@ def compare_items():
|
|
| 292 |
|
| 293 |
if query_visuals and item_visuals:
|
| 294 |
all_shape_scores, all_color_scores, all_texture_scores = [], [], []
|
| 295 |
-
|
| 296 |
for q_vis in query_visuals:
|
| 297 |
for i_vis in item_visuals:
|
| 298 |
-
# Shape comparison
|
| 299 |
shape_dist = cv2.matchShapes(np.array(q_vis["shape_features"], dtype="float32"), np.array(i_vis["shape_features"], dtype="float32"), cv2.CONTOURS_MATCH_I1, 0.0)
|
| 300 |
all_shape_scores.append(1.0 / (1.0 + shape_dist))
|
| 301 |
-
# Color comparison
|
| 302 |
all_color_scores.append(cv2.compareHist(np.array(q_vis["color_features"], dtype="float32"), np.array(i_vis["color_features"], dtype="float32"), cv2.HISTCMP_CORREL))
|
| 303 |
-
# Texture comparison
|
| 304 |
all_texture_scores.append(cv2.compareHist(np.array(q_vis["texture_features"], dtype="float32"), np.array(i_vis["texture_features"], dtype="float32"), cv2.HISTCMP_CORREL))
|
| 305 |
|
| 306 |
if all_shape_scores:
|
|
@@ -308,21 +289,28 @@ def compare_items():
|
|
| 308 |
image_score = (weights["shape"] * max(all_shape_scores) +
|
| 309 |
weights["color"] * max(all_color_scores) +
|
| 310 |
weights["texture"] * max(all_texture_scores))
|
|
|
|
| 311 |
|
| 312 |
# --- 3. Calculate Final Hybrid Score ---
|
| 313 |
-
|
| 314 |
-
|
|
|
|
| 315 |
final_score = text_score # Default to text score if one has no image
|
|
|
|
|
|
|
| 316 |
|
| 317 |
if final_score >= FINAL_SCORE_THRESHOLD:
|
| 318 |
-
|
|
|
|
|
|
|
|
|
|
| 319 |
|
| 320 |
except Exception as e:
|
| 321 |
-
print(f"
|
| 322 |
continue
|
| 323 |
|
| 324 |
results.sort(key=lambda x: x["score"], reverse=True)
|
| 325 |
-
print(f"
|
| 326 |
return jsonify({"matches": results}), 200
|
| 327 |
|
| 328 |
except Exception as e:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# --------------------------------------------------------------------------
|
| 2 |
# UNIFIED AI SERVICE FOR LOST & FOUND V2
|
| 3 |
# --------------------------------------------------------------------------
|
| 4 |
+
# This Flask application combines two matching engines into a single service:
|
| 5 |
# 1. Text Engine: Analyzes structured text fields (brand, material, etc.)
|
| 6 |
# using text embeddings and specific comparison logic.
|
| 7 |
# 2. Image Engine: Analyzes multiple images per item by segmenting the
|
|
|
|
| 39 |
TEXT_FIELD_WEIGHTS = { "brand": 1.0, "material": 1.0, "markings": 1.0, "colors": 1.0, "size": 1.0 }
|
| 40 |
TEXT_FIELDS_TO_EMBED = ["brand", "material", "markings"]
|
| 41 |
SCORE_WEIGHTS = { "text_score": 0.5, "image_score": 0.5 }
|
| 42 |
+
FINAL_SCORE_THRESHOLD = 0.55
|
| 43 |
|
| 44 |
# --- Model Loading ---
|
| 45 |
print("="*50)
|
|
|
|
| 74 |
# ==========================================================================
|
| 75 |
|
| 76 |
# --- Text Processing Helpers ---
|
| 77 |
+
def get_text_embedding(text: str) -> list:
|
|
|
|
| 78 |
if not text or not text.strip(): return None
|
| 79 |
instruction = "Represent this sentence for searching relevant passages: "
|
| 80 |
inputs = tokenizer_text(instruction + text, return_tensors='pt', padding=True, truncation=True, max_length=512).to(device)
|
|
|
|
| 82 |
outputs = model_text(**inputs)
|
| 83 |
embedding = outputs.last_hidden_state[:, 0, :]
|
| 84 |
embedding = torch.nn.functional.normalize(embedding, p=2, dim=1)
|
| 85 |
+
return embedding.cpu().numpy()[0].tolist()
|
| 86 |
|
| 87 |
def cosine_similarity(vec1, vec2):
|
|
|
|
| 88 |
if vec1 is None or vec2 is None: return 0.0
|
| 89 |
vec1, vec2 = np.array(vec1), np.array(vec2)
|
| 90 |
return float(np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2)))
|
| 91 |
|
| 92 |
def calculate_color_similarity(colors1: list, colors2: list) -> float:
|
|
|
|
| 93 |
if not colors1 and not colors2: return 1.0
|
| 94 |
if not colors1 or not colors2: return 0.0
|
| 95 |
set1, set2 = set(c.lower() for c in colors1), set(c.lower() for c in colors2)
|
|
|
|
| 99 |
|
| 100 |
# --- Image Processing Helpers ---
|
| 101 |
def segment_guided_object(image: Image.Image, object_label: str) -> Image.Image:
|
|
|
|
| 102 |
prompt = f"a {object_label}."
|
| 103 |
image_rgb = image.convert("RGB")
|
| 104 |
image_np = np.array(image_rgb)
|
|
|
|
| 113 |
)
|
| 114 |
|
| 115 |
if not results or len(results[0]['boxes']) == 0:
|
| 116 |
+
print(f" [Segment] β οΈ Warning: Could not detect '{object_label}'. Using full image.")
|
| 117 |
+
return image
|
| 118 |
|
| 119 |
sam_predictor.set_image(image_np)
|
| 120 |
+
box = results[0]['boxes'][0].cpu().numpy().astype(int)
|
| 121 |
masks, _, _ = sam_predictor.predict(box=box, multimask_output=False)
|
| 122 |
|
| 123 |
mask = masks[0]
|
|
|
|
| 128 |
return Image.fromarray(object_rgba, 'RGBA')
|
| 129 |
|
| 130 |
def extract_visual_features(segmented_image_rgba: Image.Image) -> dict:
|
|
|
|
| 131 |
image_np = np.array(segmented_image_rgba)
|
| 132 |
bgr_image = cv2.cvtColor(image_np[:, :, :3], cv2.COLOR_RGB2BGR)
|
| 133 |
mask = image_np[:, :, 3]
|
| 134 |
|
|
|
|
| 135 |
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 136 |
shape_features = np.zeros(7)
|
| 137 |
if contours:
|
|
|
|
| 141 |
hu_moments = cv2.HuMoments(moments).flatten()
|
| 142 |
shape_features = -np.sign(hu_moments) * np.log10(np.abs(hu_moments) + 1e-7)
|
| 143 |
|
|
|
|
| 144 |
color_hist = cv2.calcHist([bgr_image], [0, 1, 2], mask, [8, 8, 8], [0, 256, 0, 256, 0, 256])
|
| 145 |
cv2.normalize(color_hist, color_hist)
|
| 146 |
|
|
|
|
| 147 |
gray_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2GRAY)
|
| 148 |
lbp = feature.local_binary_pattern(gray_image, P=24, R=3, method="uniform")
|
| 149 |
(texture_hist, _) = np.histogram(lbp[mask > 0], bins=np.arange(0, 27), range=(0, 26))
|
|
|
|
| 157 |
}
|
| 158 |
|
| 159 |
def calculate_dynamic_weights(all_shape_scores, all_color_scores, stability_factor=0.4):
|
|
|
|
| 160 |
shape_scores, color_scores = np.array(all_shape_scores), np.array(all_color_scores)
|
| 161 |
|
| 162 |
def get_iqr(scores):
|
|
|
|
| 166 |
|
| 167 |
shape_dispersion = get_iqr(shape_scores)
|
| 168 |
color_dispersion = get_iqr(color_scores)
|
|
|
|
| 169 |
inv_shape_disp = 1 / (shape_dispersion + stability_factor)
|
| 170 |
inv_color_disp = 1 / (color_dispersion + stability_factor)
|
|
|
|
| 171 |
total_inv_disp = inv_shape_disp + inv_color_disp
|
| 172 |
+
remaining_weight = 0.8
|
|
|
|
| 173 |
|
| 174 |
shape_weight = remaining_weight * (inv_shape_disp / total_inv_disp) if total_inv_disp > 0 else remaining_weight / 2
|
| 175 |
color_weight = remaining_weight * (inv_color_disp / total_inv_disp) if total_inv_disp > 0 else remaining_weight / 2
|
|
|
|
| 186 |
|
| 187 |
@app.route('/process', methods=['POST'])
|
| 188 |
def process_item():
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
try:
|
| 190 |
data = request.json
|
| 191 |
print(f"\n[PROCESS] Received request for object: {data.get('objectName')}")
|
| 192 |
|
| 193 |
# --- 1. Process Text Features ---
|
| 194 |
+
print(" [PROCESS] Generating text embeddings...")
|
| 195 |
response = {
|
| 196 |
"canonicalLabel": data.get('objectName', '').lower().strip(),
|
| 197 |
"brand_embedding": get_text_embedding(data.get('brand')),
|
| 198 |
"material_embedding": get_text_embedding(data.get('material')),
|
| 199 |
"markings_embedding": get_text_embedding(data.get('markings'))
|
| 200 |
}
|
| 201 |
+
print(" [PROCESS] β
Text embeddings generated.")
|
| 202 |
|
| 203 |
# --- 2. Process Image Features ---
|
| 204 |
visual_features_list = []
|
| 205 |
if data.get('images'):
|
| 206 |
+
print(f" [PROCESS] Processing {len(data['images'])} image(s)...")
|
| 207 |
+
for i, image_url in enumerate(data['images']):
|
| 208 |
try:
|
| 209 |
+
print(f" - Processing image {i+1}: {image_url}")
|
| 210 |
img_response = requests.get(image_url, timeout=20)
|
| 211 |
img_response.raise_for_status()
|
| 212 |
image = Image.open(BytesIO(img_response.content))
|
| 213 |
|
| 214 |
+
print(" - Segmenting object...")
|
| 215 |
segmented_image = segment_guided_object(image, data['objectName'])
|
| 216 |
+
print(" - Extracting visual features...")
|
| 217 |
features = extract_visual_features(segmented_image)
|
| 218 |
visual_features_list.append(features)
|
| 219 |
+
print(f" - β
Image {i+1} processed.")
|
| 220 |
except Exception as e:
|
| 221 |
+
print(f" - β οΈ Could not process image {image_url}: {e}")
|
| 222 |
continue
|
| 223 |
|
| 224 |
response["visual_features"] = visual_features_list
|
| 225 |
+
print(f" [PROCESS] β
Successfully processed all features.")
|
| 226 |
return jsonify(response), 200
|
| 227 |
|
| 228 |
except Exception as e:
|
|
|
|
| 232 |
|
| 233 |
@app.route('/compare', methods=['POST'])
|
| 234 |
def compare_items():
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
try:
|
| 236 |
payload = request.json
|
| 237 |
query_item = payload['queryItem']
|
|
|
|
| 240 |
|
| 241 |
results = []
|
| 242 |
for item in search_list:
|
| 243 |
+
item_id = item.get('_id')
|
| 244 |
+
print(f"\n - Comparing with item: {item_id} ({item.get('objectName')})")
|
| 245 |
try:
|
| 246 |
# --- 1. Calculate Text Score ---
|
| 247 |
total_text_score, total_text_weight = 0, 0
|
| 248 |
|
|
|
|
| 249 |
for field in TEXT_FIELDS_TO_EMBED:
|
| 250 |
q_emb = query_item.get(f"{field}_embedding")
|
| 251 |
i_emb = item.get(f"{field}_embedding")
|
|
|
|
| 255 |
total_text_score += score * weight
|
| 256 |
total_text_weight += weight
|
| 257 |
|
|
|
|
| 258 |
if query_item.get('colors'):
|
| 259 |
score = calculate_color_similarity(query_item['colors'], item.get('colors', []))
|
| 260 |
weight = TEXT_FIELD_WEIGHTS.get('colors', 0)
|
| 261 |
total_text_score += score * weight
|
| 262 |
total_text_weight += weight
|
| 263 |
|
|
|
|
| 264 |
if query_item.get('size'):
|
| 265 |
+
score = 1.0 if query_item.get('size') == item.get('size') else 0.0
|
| 266 |
weight = TEXT_FIELD_WEIGHTS.get('size', 0)
|
| 267 |
total_text_score += score * weight
|
| 268 |
total_text_weight += weight
|
| 269 |
|
| 270 |
text_score = (total_text_score / total_text_weight) if total_text_weight > 0 else 0.0
|
| 271 |
+
print(f" - Text Score: {text_score:.4f}")
|
| 272 |
|
| 273 |
# --- 2. Calculate Image Score ---
|
| 274 |
image_score = 0.0
|
|
|
|
| 277 |
|
| 278 |
if query_visuals and item_visuals:
|
| 279 |
all_shape_scores, all_color_scores, all_texture_scores = [], [], []
|
|
|
|
| 280 |
for q_vis in query_visuals:
|
| 281 |
for i_vis in item_visuals:
|
|
|
|
| 282 |
shape_dist = cv2.matchShapes(np.array(q_vis["shape_features"], dtype="float32"), np.array(i_vis["shape_features"], dtype="float32"), cv2.CONTOURS_MATCH_I1, 0.0)
|
| 283 |
all_shape_scores.append(1.0 / (1.0 + shape_dist))
|
|
|
|
| 284 |
all_color_scores.append(cv2.compareHist(np.array(q_vis["color_features"], dtype="float32"), np.array(i_vis["color_features"], dtype="float32"), cv2.HISTCMP_CORREL))
|
|
|
|
| 285 |
all_texture_scores.append(cv2.compareHist(np.array(q_vis["texture_features"], dtype="float32"), np.array(i_vis["texture_features"], dtype="float32"), cv2.HISTCMP_CORREL))
|
| 286 |
|
| 287 |
if all_shape_scores:
|
|
|
|
| 289 |
image_score = (weights["shape"] * max(all_shape_scores) +
|
| 290 |
weights["color"] * max(all_color_scores) +
|
| 291 |
weights["texture"] * max(all_texture_scores))
|
| 292 |
+
print(f" - Image Score: {image_score:.4f}")
|
| 293 |
|
| 294 |
# --- 3. Calculate Final Hybrid Score ---
|
| 295 |
+
if query_visuals and item_visuals:
|
| 296 |
+
final_score = (SCORE_WEIGHTS['text_score'] * text_score + SCORE_WEIGHTS['image_score'] * image_score)
|
| 297 |
+
else:
|
| 298 |
final_score = text_score # Default to text score if one has no image
|
| 299 |
+
|
| 300 |
+
print(f" - Final Hybrid Score: {final_score:.4f}")
|
| 301 |
|
| 302 |
if final_score >= FINAL_SCORE_THRESHOLD:
|
| 303 |
+
print(f" - β
ACCEPTED (Score >= {FINAL_SCORE_THRESHOLD})")
|
| 304 |
+
results.append({ "_id": str(item_id), "score": round(final_score, 4) })
|
| 305 |
+
else:
|
| 306 |
+
print(f" - β REJECTED (Score < {FINAL_SCORE_THRESHOLD})")
|
| 307 |
|
| 308 |
except Exception as e:
|
| 309 |
+
print(f" - β οΈ Skipping item {item_id} due to error: {e}")
|
| 310 |
continue
|
| 311 |
|
| 312 |
results.sort(key=lambda x: x["score"], reverse=True)
|
| 313 |
+
print(f"\n[COMPARE] β
Search complete. Found {len(results)} potential matches.")
|
| 314 |
return jsonify({"matches": results}), 200
|
| 315 |
|
| 316 |
except Exception as e:
|