Spaces:
Sleeping
Sleeping
from PIL import Image | |
from transformers import GroundingDinoProcessor, GroundingDinoForObjectDetection | |
import cv2 | |
import os | |
HF_CACHE = "/tmp/hf_cache" | |
os.makedirs(HF_CACHE, exist_ok=True) | |
os.environ["TRANSFORMERS_CACHE"] = HF_CACHE | |
class DinoWrapper: | |
""" | |
Wrapper for Grounding DINO model for text-prompt-based object detection. | |
""" | |
def __init__(self, model_dir, device=None): | |
""" | |
Initialize the Grounding DINO model. | |
:param model_name: HuggingFace model repo name | |
:param device: 'cuda' or 'cpu'; if None, auto-detects | |
""" | |
device = "cpu" | |
self.device = device | |
self.model = GroundingDinoForObjectDetection.from_pretrained( | |
pretrained_model_name_or_path=model_dir, | |
local_files_only=True, | |
use_safetensors=True | |
).to(self.device) | |
self.processor = GroundingDinoProcessor.from_pretrained( | |
pretrained_model_name_or_path=model_dir, | |
local_files_only=True | |
) | |
def predict_boxes(self, image, prompt, box_threshold=0.15, text_threshold=0.18): | |
""" | |
Predict bounding boxes based on the prompt. | |
:param image: Input image (NumPy array, BGR) | |
:param prompt: Textual description of target object(s) | |
:param box_threshold: Confidence threshold | |
:return: List of boxes [x1, y1, x2, y2] in absolute pixel coords | |
""" | |
print(f"[DEBUG] Prompt to model: {prompt}") | |
image_pil = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) | |
inputs = self.processor(images=image_pil, text=prompt, return_tensors="pt").to(self.device) | |
print(f"[DEBUG] input_ids: {inputs['input_ids']}") | |
outputs = self.model(**inputs) | |
print(f"[DEBUG] Model output keys: {outputs.keys()}") | |
results = self.processor.post_process_grounded_object_detection( | |
outputs, | |
inputs["input_ids"], | |
box_threshold, | |
text_threshold, | |
[image_pil.size[::-1]] | |
)[0] | |
print(f"[DEBUG] text_labels: {results['text_labels'] if 'text_labels' in results else 'NO LABELS'}") | |
print(f"[DEBUG] Raw results keys: {results.keys()}") | |
print(f"[DEBUG] boxes: {results['boxes'] if 'boxes' in results else 'NO BOXES FOUND'}") | |
print(f"[DEBUG] scores: {results['scores'] if 'scores' in results else 'NO SCORES FOUND'}") | |
print(f"[DINO] Found {len(results['boxes'])} box(es) for prompt: '{prompt}'") | |
boxes = results["boxes"].detach().cpu().numpy().tolist() | |
return boxes | |
def detect(self, image, prompt, box_threshold=0.25, text_threshold=0.15, min_box_area=500): | |
boxes = self.predict_boxes(image, prompt, box_threshold, text_threshold) | |
filtered = [box for box in boxes if (box[2] - box[0]) * (box[3] - box[1]) >= min_box_area] | |
return filtered | |