Stanislav
feat: IMPORTANT changes to write DINO MODEL
08a4a7f
from PIL import Image
from transformers import GroundingDinoProcessor, GroundingDinoForObjectDetection
import cv2
import os
HF_CACHE = "/tmp/hf_cache"
os.makedirs(HF_CACHE, exist_ok=True)
os.environ["TRANSFORMERS_CACHE"] = HF_CACHE
class DinoWrapper:
"""
Wrapper for Grounding DINO model for text-prompt-based object detection.
"""
def __init__(self, model_dir, device=None):
"""
Initialize the Grounding DINO model.
:param model_name: HuggingFace model repo name
:param device: 'cuda' or 'cpu'; if None, auto-detects
"""
device = "cpu"
self.device = device
self.model = GroundingDinoForObjectDetection.from_pretrained(
pretrained_model_name_or_path=model_dir,
local_files_only=True,
use_safetensors=True
).to(self.device)
self.processor = GroundingDinoProcessor.from_pretrained(
pretrained_model_name_or_path=model_dir,
local_files_only=True
)
def predict_boxes(self, image, prompt, box_threshold=0.15, text_threshold=0.18):
"""
Predict bounding boxes based on the prompt.
:param image: Input image (NumPy array, BGR)
:param prompt: Textual description of target object(s)
:param box_threshold: Confidence threshold
:return: List of boxes [x1, y1, x2, y2] in absolute pixel coords
"""
print(f"[DEBUG] Prompt to model: {prompt}")
image_pil = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
inputs = self.processor(images=image_pil, text=prompt, return_tensors="pt").to(self.device)
print(f"[DEBUG] input_ids: {inputs['input_ids']}")
outputs = self.model(**inputs)
print(f"[DEBUG] Model output keys: {outputs.keys()}")
results = self.processor.post_process_grounded_object_detection(
outputs,
inputs["input_ids"],
box_threshold,
text_threshold,
[image_pil.size[::-1]]
)[0]
print(f"[DEBUG] text_labels: {results['text_labels'] if 'text_labels' in results else 'NO LABELS'}")
print(f"[DEBUG] Raw results keys: {results.keys()}")
print(f"[DEBUG] boxes: {results['boxes'] if 'boxes' in results else 'NO BOXES FOUND'}")
print(f"[DEBUG] scores: {results['scores'] if 'scores' in results else 'NO SCORES FOUND'}")
print(f"[DINO] Found {len(results['boxes'])} box(es) for prompt: '{prompt}'")
boxes = results["boxes"].detach().cpu().numpy().tolist()
return boxes
def detect(self, image, prompt, box_threshold=0.25, text_threshold=0.15, min_box_area=500):
boxes = self.predict_boxes(image, prompt, box_threshold, text_threshold)
filtered = [box for box in boxes if (box[2] - box[0]) * (box[3] - box[1]) >= min_box_area]
return filtered