File size: 24,387 Bytes
837d48c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
import gradio as gr
import os
import torch
from PIL import Image
from SDLens import HookedStableDiffusionXLPipeline
from SAE import SparseAutoencoder
from utils import TimedHook, add_feature_on_area_base, replace_with_feature_base, add_feature_on_area_turbo, replace_with_feature_turbo
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
import threading
import spaces
code_to_block = {
    "down.2.1": "unet.down_blocks.2.attentions.1",
    "mid.0": "unet.mid_block.attentions.0",
    "up.0.1": "unet.up_blocks.0.attentions.1",
    "up.0.0": "unet.up_blocks.0.attentions.0"
}
lock = threading.Lock()

base_guidance_scale_default = 8.0
turbo_guidance_scale_default = 0.0


def process_cache(cache, saes_dict, timestep=None):

    top_features_dict = {}
    sparse_maps_dict = {}

    for code in code_to_block.keys():
        block = code_to_block[code]
        sae = saes_dict[code]

        diff = cache["output"][block] - cache["input"][block]
        if diff.shape[0] == 2: # guidance is on and we need to select the second output
            diff = diff[1].unsqueeze(0)

        # If a specific timestep is provided, select that timestep from the cached activations
        if timestep is not None and timestep < diff.shape[1]:
            diff = diff[:, timestep:timestep+1]
        
        diff = diff.permute(0, 1, 3, 4, 2).squeeze(0).squeeze(0)
        with torch.no_grad():
            sparse_maps = sae.encode(diff)
        averages = torch.mean(sparse_maps, dim=(0, 1))

        top_features = torch.topk(averages, 10).indices

        top_features_dict[code] = top_features.cpu().tolist()
        sparse_maps_dict[code] = sparse_maps.cpu().numpy()

    return top_features_dict, sparse_maps_dict


def plot_image_heatmap(cache, block_select, radio):
    code = block_select.split()[0]
    feature = int(radio)
    block = code_to_block[code]
    
    heatmap = cache["heatmaps"][code][:, :, feature]
    heatmap = np.kron(heatmap, np.ones((32, 32)))
    image = cache["image"].convert("RGBA")
    
    jet = plt.cm.jet
    cmap = jet(np.arange(jet.N))
    cmap[:1, -1] = 0
    cmap[1:, -1] = 0.6
    cmap = ListedColormap(cmap)
    heatmap = (heatmap - np.min(heatmap)) / (np.max(heatmap) - np.min(heatmap))
    heatmap_rgba = cmap(heatmap)
    heatmap_image = Image.fromarray((heatmap_rgba * 255).astype(np.uint8))
    heatmap_with_transparency = Image.alpha_composite(image, heatmap_image)

    return heatmap_with_transparency


def create_prompt_part(pipe, saes_dict, demo):
    @spaces.GPU
    def image_gen(prompt, timestep=None, num_steps=None, guidance_scale=None):
        lock.acquire()
        try:
            # Default values
            is_base_model = pipe.pipe.name_or_path == "stabilityai/stable-diffusion-xl-base-1.0"
            default_n_steps = 25 if is_base_model else 1
            default_guidance = base_guidance_scale_default if is_base_model else turbo_guidance_scale_default
            
            # Use provided values if available, otherwise use defaults
            n_steps = default_n_steps if num_steps is None else int(num_steps)
            guidance = default_guidance if guidance_scale is None else float(guidance_scale)
            
            # Convert timestep to integer if it's not None
            timestep_int = None if timestep is None else int(timestep)
            
            images, cache = pipe.run_with_cache(
                prompt,
                positions_to_cache=list(code_to_block.values()),
                num_inference_steps=n_steps,
                generator=torch.Generator(device="cpu").manual_seed(42),
                guidance_scale=guidance,
                save_input=True,
                save_output=True
            )
        finally:
            lock.release()
        
        top_features_dict, top_sparse_maps_dict = process_cache(cache, saes_dict, timestep_int)
        return images.images[0], {
            "image": images.images[0],
            "heatmaps": top_sparse_maps_dict,
            "features": top_features_dict
        }

    def update_radio(cache, block_select):
        code = block_select.split()[0]
        return gr.update(choices=cache["features"][code])

    def update_img(cache, block_select, radio):
        new_img = plot_image_heatmap(cache, block_select, radio)
        return new_img
        
    def update_visibility():
        is_base_model = pipe.pipe.name_or_path == "stabilityai/stable-diffusion-xl-base-1.0"
        return gr.update(visible=is_base_model), gr.update(visible=is_base_model)

    with gr.Tab("Explore", elem_classes="tabs") as explore_tab:
        cache = gr.State(value={
            "image": None,
            "heatmaps": None,
            "features": []
        })
        with gr.Row():
            with gr.Column(scale=7):
                with gr.Row(equal_height=True):
                    prompt_field = gr.Textbox(lines=1, label="Enter prompt here", value="A cinematic shot of a professor sloth wearing a tuxedo at a BBQ party and eathing a dish with peas.")
                    button = gr.Button("Generate", elem_classes="generate_button1")

                with gr.Row():
                    image = gr.Image(width=512, height=512, image_mode="RGB", label="Generated image")
            
            with gr.Column(scale=4):
                block_select = gr.Dropdown(
                    choices=["up.0.1 (style)", "down.2.1 (composition)", "up.0.0 (details)", "mid.0"], 
                    value="down.2.1 (composition)",
                    label="Select block", 
                    elem_id="block_select",
                    interactive=True
                )
                
                # Add SDXL base specific controls
                is_base_model = pipe.pipe.name_or_path == "stabilityai/stable-diffusion-xl-base-1.0"
                
                with gr.Group() as sdxl_base_controls:
                    steps_slider = gr.Slider(
                        minimum=1,
                        maximum=50,
                        value=25 if is_base_model else 1,
                        step=1,
                        label="Number of steps",
                        elem_id="steps_slider",
                        interactive=True,
                        visible=is_base_model
                    )
                    
                    guidance_slider = gr.Slider(
                        minimum=0.0,
                        maximum=15.0,
                        value=base_guidance_scale_default if is_base_model else turbo_guidance_scale_default,
                        step=0.1,
                        label="Guidance scale",
                        elem_id="guidance_slider",
                        interactive=True,
                        visible=is_base_model
                    )
                
                    # Add timestep selector
                    n_steps = 25 if is_base_model else 1
                    timestep_selector = gr.Slider(
                        minimum=0,
                        maximum=n_steps-1,
                        value=None,
                        step=1,
                        label="Timestep (leave empty for average across all steps)",
                        elem_id="timestep_selector",
                        interactive=True,
                        visible=is_base_model
                    )
                    recompute_button = gr.Button("Recompute", elem_id="recompute_button",
                                                 visible=is_base_model)
                
                # Update max timestep when steps change
                steps_slider.change(lambda s: gr.update(maximum=s-1), [steps_slider], [timestep_selector])
                
                radio = gr.Radio(choices=[], label="Select a feature", interactive=True)
        
        button.click(image_gen, [prompt_field, timestep_selector, steps_slider, guidance_slider], outputs=[image, cache])
        cache.change(update_radio, [cache, block_select], outputs=[radio])
        block_select.select(update_radio, [cache, block_select], outputs=[radio])
        radio.select(update_img, [cache, block_select, radio], outputs=[image])
        recompute_button.click(image_gen, [prompt_field, timestep_selector, steps_slider, guidance_slider], outputs=[image, cache])
        demo.load(image_gen, [prompt_field, timestep_selector, steps_slider, guidance_slider], outputs=[image, cache])

    return explore_tab

def downsample_mask(image, factor):
    downsampled = image.reshape(
        (image.shape[0] // factor, factor,
        image.shape[1] // factor, factor)
    )
    downsampled = downsampled.mean(axis=(1, 3))
    return downsampled

def create_intervene_part(pipe: HookedStableDiffusionXLPipeline, saes_dict, means_dict, demo):
    @spaces.GPU
    def image_gen(prompt, num_steps, guidance_scale=None):
        lock.acquire()
        is_base_model = pipe.pipe.name_or_path == "stabilityai/stable-diffusion-xl-base-1.0"
        default_guidance = base_guidance_scale_default if is_base_model else turbo_guidance_scale_default
        guidance = default_guidance if guidance_scale is None else float(guidance_scale)
        try:
            images = pipe.run_with_hooks(
                prompt,
                position_hook_dict={},
                num_inference_steps=int(num_steps),
                generator=torch.Generator(device="cpu").manual_seed(42),
                guidance_scale=guidance,
            )
        finally:
            lock.release()
        if images.images[0].size == (1024, 1024):
            return images.images[0].resize((512, 512)), images.images[0].resize((512, 512))
        else:
            return images.images[0], images.images[0]

    @spaces.GPU
    def image_mod(prompt, block_str, brush_index, strength, num_steps, input_image, guidance_scale=None, start_index=None, end_index=None):
        block = block_str.split(" ")[0]
        is_base_model = pipe.pipe.name_or_path == "stabilityai/stable-diffusion-xl-base-1.0"
        mask = (input_image["layers"][0] > 0)[:, :, -1].astype(float)
        if is_base_model:
            mask = downsample_mask(mask, 16)
        else:
            mask = downsample_mask(mask, 32)
        mask = torch.tensor(mask, dtype=torch.float32, device="cuda")

        if mask.sum() == 0:
            gr.Info("No mask selected, please draw on the input image")
            
        if is_base_model:
            # Set default values for start_index and end_index if not provided
            if start_index is None:
                start_index = 0
            if end_index is None:
                end_index = int(num_steps)
                
            # Ensure start_index and end_index are within valid ranges
            start_index = max(0, min(int(start_index), int(num_steps)))
            end_index = max(0, min(int(end_index), int(num_steps)))
            
            # Ensure start_index is less than end_index
            if start_index >= end_index:
                start_index = max(0, end_index - 1)
            def myhook(module, input, output):
                return add_feature_on_area_base(
                    saes_dict[block],
                    brush_index,
                    mask * means_dict[block][brush_index] * strength,
                    module,
                    input, 
                    output)
            hook = TimedHook(myhook, int(num_steps), np.arange(start_index, end_index))
        else:
            def hook(module, input, output):
                return add_feature_on_area_turbo(
                    saes_dict[block],
                    brush_index,
                    mask * means_dict[block][brush_index] * strength,
                    module,
                    input, 
                    output)
        lock.acquire()
        is_base_model = pipe.pipe.name_or_path == "stabilityai/stable-diffusion-xl-base-1.0"
        default_guidance = base_guidance_scale_default if is_base_model else turbo_guidance_scale_default
        guidance = default_guidance if guidance_scale is None else float(guidance_scale)
        
        try:
            image = pipe.run_with_hooks(
                prompt,
                position_hook_dict={code_to_block[block]: hook},
                num_inference_steps=int(num_steps),
                generator=torch.Generator(device="cpu").manual_seed(42),
                guidance_scale=guidance
            ).images[0]
        finally:
            lock.release()
        return image

    @spaces.GPU
    def feature_icon(block_str, brush_index, guidance_scale=None):
        block = block_str.split(" ")[0]
        if block in ["mid.0", "up.0.0"]:
            gr.Info("Note that Feature Icon works best with down.2.1 and up.0.1 blocks but feel free to explore", duration=3)

        def hook(module, input, output):
            if is_base_model:
                return replace_with_feature_base(
                    saes_dict[block],
                    brush_index,
                    means_dict[block][brush_index] * saes_dict[block].k,
                    module,
                    input,
                    output
                )
            else:
                return replace_with_feature_turbo(
                    saes_dict[block],
                    brush_index,
                    means_dict[block][brush_index] * saes_dict[block].k,
                    module,
                    input,
                    output)
        lock.acquire()
        is_base_model = pipe.pipe.name_or_path == "stabilityai/stable-diffusion-xl-base-1.0"
        n_steps = 25 if is_base_model else 1
        default_guidance = base_guidance_scale_default if is_base_model else turbo_guidance_scale_default
        guidance = default_guidance if guidance_scale is None else float(guidance_scale)
        
        try:
            image = pipe.run_with_hooks(
                "",
                position_hook_dict={code_to_block[block]: hook},
                num_inference_steps=n_steps,
                generator=torch.Generator(device="cpu").manual_seed(42),
                guidance_scale=guidance,
            ).images[0]
        finally:
            lock.release()
        return image

    with gr.Tab("Paint!", elem_classes="tabs") as intervene_tab:
        image_state = gr.State(value=None)
        with gr.Row():
            with gr.Column(scale=3):
                # Generation column
                with gr.Row():
                    # prompt and num_steps
                    is_base_model = pipe.pipe.name_or_path == "stabilityai/stable-diffusion-xl-base-1.0"
                    n_steps = 25 if is_base_model else 1
                    prompt_field = gr.Textbox(lines=1, label="Enter prompt here", value="A dog plays with a ball, closeup", elem_id="prompt_input")                    
                    
                with gr.Row():
                    num_steps = gr.Number(value=n_steps, label="Number of steps", minimum=1, maximum=50, elem_id="num_steps", precision=0)
                    guidance_slider = gr.Slider(
                        minimum=0.0,
                        maximum=15.0,
                        value=base_guidance_scale_default if is_base_model else turbo_guidance_scale_default,
                        step=0.1,
                        label="Guidance scale",
                        elem_id="paint_guidance_slider",
                        interactive=True,
                        visible=is_base_model
                    )
                    
                with gr.Row():
                    # Generate button
                    button_generate = gr.Button("Generate", elem_id="generate_button")
            with gr.Column(scale=3):
                # Intervention column
                with gr.Row():
                    # dropdowns and number inputs
                    with gr.Column(scale=7):
                        with gr.Row():
                            block_select = gr.Dropdown(
                                choices=["up.0.1 (style)", "down.2.1 (composition)", "up.0.0 (details)", "mid.0"], 
                                value="down.2.1 (composition)",
                                label="Select block", 
                                elem_id="block_select"
                            )
                            brush_index = gr.Number(value=4998, label="Brush index", minimum=0, maximum=5119, elem_id="brush_index", precision=0)
                        with gr.Row():
                            button_icon = gr.Button('Feature Icon', elem_id="feature_icon_button")
                        with gr.Row():
                            gr.Markdown("**TimedHook Range** (which steps to apply the feature)", visible=is_base_model)
                        with gr.Row():
                            start_index = gr.Number(value=5 if is_base_model else 0, label="Start index", minimum=0, maximum=n_steps, elem_id="start_index", precision=0, visible=is_base_model)
                            end_index = gr.Number(value=20 if is_base_model else 1, label="End index", minimum=0, maximum=n_steps, elem_id="end_index", precision=0, visible=is_base_model)
                    with gr.Column(scale=3):
                        with gr.Row():
                            strength = gr.Number(value=10, label="Strength", minimum=-40, maximum=40, elem_id="strength", precision=2)
                        with gr.Row():
                            button = gr.Button('Apply', elem_id="apply_button")

        with gr.Row():
            with gr.Column():
                # Input image
                i_image = gr.Sketchpad(
                    height=600,
                    layers=False, transforms=None, placeholder="Generate and paint!",
                    container=False,
                    brush=gr.Brush(default_size=40, color_mode="fixed", colors=['black']),
                    canvas_size=(512, 512),
                    label="Input Image")
                clear_button = gr.Button("Clear")
                clear_button.click(lambda x: x, [image_state], [i_image])
            # Output image
            o_image = gr.Image(width=512, height=512, label="Output Image")

        # Set up the click events
        button_generate.click(image_gen, inputs=[prompt_field, num_steps, guidance_slider], outputs=[image_state, o_image])
        image_state.change(lambda x: x, [image_state], [i_image])
        
        if is_base_model:
            # Update max values for start_index and end_index when num_steps changes
            def update_index_maxes(steps):
                return gr.update(maximum=steps), gr.update(maximum=steps)
        
            num_steps.change(update_index_maxes, [num_steps], [start_index, end_index])
        
        button.click(image_mod, 
                    inputs=[prompt_field, block_select, brush_index, strength, num_steps, i_image, guidance_slider, start_index, end_index], 
                    outputs=o_image)
        button_icon.click(feature_icon, inputs=[block_select, brush_index, guidance_slider], outputs=o_image)
        demo.load(image_gen, [prompt_field, num_steps, guidance_slider], outputs=[image_state, o_image])


    return intervene_tab

def create_top_images_part(demo):
    def update_top_images(block_select, brush_index):
        block = block_select.split(" ")[0]
        url = f"https://huggingface.co/datasets/surokpro2/sdxl_sae_images/resolve/main/{block}/{brush_index}.jpg"
        return url

    with gr.Tab("Top Images", elem_classes="tabs") as top_images_tab:
        with gr.Row():
            block_select = gr.Dropdown(
                choices=["up.0.1 (style)", "down.2.1 (composition)", "up.0.0 (details)", "mid.0"], 
                value="down.2.1 (composition)",
                label="Select blk"
            )
            brush_index = gr.Number(value=0, label="Brush index", minimum=0, maximum=5119, precision=0)
        with gr.Row():
            image = gr.Image(width=600, height=600, label="Top Images")

        block_select.select(update_top_images, [block_select, brush_index], outputs=[image])
        brush_index.change(update_top_images, [block_select, brush_index], outputs=[image])
        demo.load(update_top_images, [block_select, brush_index], outputs=[image])
    return top_images_tab


def create_intro_part():
    with gr.Tab("Instructions", elem_classes="tabs") as intro_tab:
        gr.Markdown(
            '''# One-Step is Enough: Sparse Autoencoders for Text-to-Image Diffusion Models
            ## Stable Diffustion XL multistep version
            
            ## Note
            If you encounter GPU time limit errors, don't worry, the app still works and you can use it freely.
            
            ## Demo Overview
            This demo showcases the use of Sparse Autoencoders (SAEs) to understand the features learned by the Stable Diffusion XL (Turbo) model. 
            
            ## How to Use
            ### Explore
            * Enter a prompt in the text box and click on the "Generate" button to generate an image.
            * You can observe the active features in different blocks plot on top of the generated image.
            ### Top Images
            * For each feature, you can view the top images that activate the feature the most.
            ### Paint!
            * Generate an image using the prompt.
            * Paint on the generated image to apply interventions.
            * Use the "Feature Icon" button to understand how the selected brush functions.

            ### Remarks
            * Not all brushes mix well with all images. Experiment with different brushes and strengths.
            * Feature Icon works best with `down.2.1 (composition)` and `up.0.1 (style)` blocks.
            * This demo is provided for research purposes only. We do not take responsibility for the content generated by the demo.

            ### Interesting features to try
            To get started, try the following features:
            - down.2.1 (composition): 2301 (evil) 3747 (image frame) 4998 (cartoon)
            - up.0.1 (style): 4977 (tiger stripes) 90 (fur) 2615 (twilight blur)
            '''
        )
    
    return intro_tab


def create_demo(pipe, saes_dict, means_dict):
    custom_css = """
    .tabs button {
        font-size: 20px !important; /* Adjust font size for tab text */
        padding: 10px !important;   /* Adjust padding to make the tabs bigger */
        font-weight: bold !important; /* Adjust font weight to make the text bold */
    }
    .generate_button1 {
        max-width: 160px !important;
        margin-top: 20px !important;
        margin-bottom: 20px !important;
    }
    """

    with gr.Blocks(css=custom_css) as demo:
        with create_intro_part():
            pass
        with create_prompt_part(pipe, saes_dict, demo):
            pass
        with create_top_images_part(demo):
            pass
        with create_intervene_part(pipe, saes_dict, means_dict, demo):
            pass
        
    return demo

if __name__ == "__main__":
    import os
    import gradio as gr
    import torch
    from SDLens import HookedStableDiffusionXLPipeline
    from SAE import SparseAutoencoder
    
    dtype=torch.float32
    pipe = HookedStableDiffusionXLPipeline.from_pretrained(
        'stabilityai/stable-diffusion-xl-base-1.0',
        torch_dtype=dtype,
        variant=("fp16" if dtype==torch.float16 else None)
    )
    pipe.set_progress_bar_config(disable=True)
    pipe.to('cuda')

    path_to_checkpoints = './checkpoints/'

    code_to_block = {
        "down.2.1": "unet.down_blocks.2.attentions.1",
        "mid.0": "unet.mid_block.attentions.0",
        "up.0.1": "unet.up_blocks.0.attentions.1",
        "up.0.0": "unet.up_blocks.0.attentions.0"
    }

    saes_dict = {}
    means_dict = {}

    for code, block in code_to_block.items():
        sae = SparseAutoencoder.load_from_disk(
            os.path.join(path_to_checkpoints, f"{block}_k10_hidden5120_auxk256_bs4096_lr0.0001", "final"),
        )
        means = torch.load(
            os.path.join(path_to_checkpoints, f"{block}_k10_hidden5120_auxk256_bs4096_lr0.0001", "final", "mean.pt"),
            weights_only=True
        )
        saes_dict[code] = sae.to('cuda', dtype=dtype)
        means_dict[code] = means.to('cuda', dtype=dtype)

    demo = create_demo(pipe, saes_dict, means_dict)
    demo.launch()