Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,822 Bytes
837d48c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
import torch
class TimedHook:
def __init__(self, hook_fn, total_steps, apply_at_steps=None):
self.hook_fn = hook_fn
self.total_steps = total_steps
self.apply_at_steps = apply_at_steps
self.current_step = 0
def identity(self, module, input, output):
return output
def __call__(self, module, input, output):
if self.apply_at_steps is not None:
if self.current_step in self.apply_at_steps:
self.__increment()
return self.hook_fn(module, input, output)
else:
self.__increment()
return self.identity(module, input, output)
return self.identity(module, input, output)
def __increment(self):
if self.current_step < self.total_steps:
self.current_step += 1
else:
self.current_step = 0
@torch.no_grad()
def add_feature(sae, feature_idx, value, module, input, output):
diff = (output[0] - input[0]).permute((0, 2, 3, 1)).to(sae.device)
activated = sae.encode(diff)
mask = torch.zeros_like(activated, device=diff.device)
mask[..., feature_idx] = value
to_add = mask @ sae.decoder.weight.T
return (output[0] + to_add.permute(0, 3, 1, 2).to(output[0].device),)
@torch.no_grad()
def add_feature_on_area_base(sae, feature_idx, activation_map, module, input, output):
return add_feature_on_area_base_both(sae, feature_idx, activation_map, module, input, output)
@torch.no_grad()
def add_feature_on_area_base_both(sae, feature_idx, activation_map, module, input, output):
# add the feature to cond and subtract from uncond
# this assumes diff.shape[0] == 2
diff = (output[0] - input[0]).permute((0, 2, 3, 1)).to(sae.device)
activated = sae.encode(diff)
mask = torch.zeros_like(activated, device=diff.device)
if len(activation_map) == 2:
activation_map = activation_map.unsqueeze(0)
mask[..., feature_idx] = mask[..., feature_idx] = activation_map.to(mask.device)
to_add = mask @ sae.decoder.weight.T
to_add = to_add.chunk(2)
output[0][0] -= to_add[0].permute(0, 3, 1, 2).to(output[0].device)[0]
output[0][1] += to_add[1].permute(0, 3, 1, 2).to(output[0].device)[0]
return output
@torch.no_grad()
def add_feature_on_area_base_cond(sae, feature_idx, activation_map, module, input, output):
# add the feature to cond
# this assumes diff.shape[0] == 2
diff = (output[0] - input[0]).permute((0, 2, 3, 1)).to(sae.device)
diff_uncond, diff_cond = diff.chunk(2)
activated = sae.encode(diff_cond)
mask = torch.zeros_like(activated, device=diff_cond.device)
if len(activation_map) == 2:
activation_map = activation_map.unsqueeze(0)
mask[..., feature_idx] = mask[..., feature_idx] = activation_map.to(mask.device)
to_add = mask @ sae.decoder.weight.T
output[0][1] += to_add.permute(0, 3, 1, 2).to(output[0].device)[0]
return output
@torch.no_grad()
def replace_with_feature_base(sae, feature_idx, value, module, input, output):
# this assumes diff.shape[0] == 2
diff = (output[0] - input[0]).permute((0, 2, 3, 1)).to(sae.device)
diff_uncond, diff_cond = diff.chunk(2)
activated = sae.encode(diff_cond)
mask = torch.zeros_like(activated, device=diff_cond.device)
mask[..., feature_idx] = value
to_add = mask @ sae.decoder.weight.T
input[0][1] += to_add.permute(0, 3, 1, 2).to(output[0].device)[0]
return input
@torch.no_grad()
def add_feature_on_area_turbo(sae, feature_idx, activation_map, module, input, output):
diff = (output[0] - input[0]).permute((0, 2, 3, 1)).to(sae.device)
activated = sae.encode(diff)
mask = torch.zeros_like(activated, device=diff.device)
if len(activation_map) == 2:
activation_map = activation_map.unsqueeze(0)
mask[..., feature_idx] = mask[..., feature_idx] = activation_map.to(mask.device)
to_add = mask @ sae.decoder.weight.T
return (output[0] + to_add.permute(0, 3, 1, 2).to(output[0].device),)
@torch.no_grad()
def replace_with_feature_turbo(sae, feature_idx, value, module, input, output):
diff = (output[0] - input[0]).permute((0, 2, 3, 1)).to(sae.device)
activated = sae.encode(diff)
mask = torch.zeros_like(activated, device=diff.device)
mask[..., feature_idx] = value
to_add = mask @ sae.decoder.weight.T
return (input[0] + to_add.permute(0, 3, 1, 2).to(output[0].device),)
@torch.no_grad()
def reconstruct_sae_hook(sae, module, input, output):
diff = (output[0] - input[0]).permute((0, 2, 3, 1)).to(sae.device)
activated = sae.encode(diff)
reconstructed = sae.decoder(activated) + sae.pre_bias
return (input[0] + reconstructed.permute(0, 3, 1, 2).to(output[0].device),)
@torch.no_grad()
def ablate_block(module, input, output):
return input |