File size: 3,257 Bytes
3b2db10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
---
title: ZeroIG Low-Light Enhancement
emoji: π
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 4.44.0
app_file: app.py
pinned: false
license: mit
---
# ZeroIG: Zero-Shot Illumination-Guided Joint Denoising and Adaptive Enhancement
π **CVPR 2024** | Zero-shot low-light image enhancement without training data
## π Quick Start
Upload a low-light image and get an enhanced version in seconds! No training required.
## π About
This space implements **ZeroIG**, a novel zero-shot method for jointly denoising and enhancing low-light images. The method is completely independent of training data and noise distribution.
### β¨ Key Features
- **Zero-shot**: No training data required
- **Joint processing**: Simultaneous denoising and enhancement
- **Illumination-guided**: Smart adaptive enhancement
- **Prevents artifacts**: Avoids over-enhancement and localized overexposure
- **Real-time**: Fast processing for practical use
### π¬ How it Works
1. **Illumination Estimation**: Extracts near-authentic illumination from the input
2. **Adaptive Enhancement**: Applies different enhancement levels based on pixel intensity
3. **Joint Denoising**: Removes noise while preserving image details
4. **Artifact Prevention**: Prevents common enhancement artifacts
## π Performance
ZeroIG outperforms state-of-the-art methods on standard benchmarks while requiring no training data.
## π― Use Cases
- **Photography**: Rescue underexposed photos
- **Security**: Enhance surveillance footage
- **Mobile**: Real-time camera enhancement
- **Medical**: Improve low-light medical imaging
- **Astronomy**: Enhance night sky photography
## πΌοΈ Supported Formats
- JPEG, PNG, TIFF, BMP
- RGB color images
- Various resolutions (optimized for typical photo sizes)
## β‘ Tips for Best Results
- Works best with real low-light photos (not artificially darkened)
- Indoor and outdoor scenes both supported
- Processing time varies with image size (typically 10-30 seconds)
## π Citation
If you use this work, please cite:
```bibtex
@inproceedings{shi2024zero,
title={ZERO-IG: Zero-Shot Illumination-Guided Joint Denoising and Adaptive Enhancement for Low-Light Images},
author={Shi, Yiqi and Liu, Duo and Zhang, Liguo and Tian, Ye and Xia, Xuezhi and Fu, Xiaojing},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={3015--3024},
year={2024}
}
```
## π Links
- π [Paper](https://openaccess.thecvf.com/content/CVPR2024/papers/Shi_ZERO-IG_Zero-Shot_Illumination-Guided_Joint_Denoising_and_Adaptive_Enhancement_for_Low-Light_CVPR_2024_paper.pdf)
- π» [Code](https://github.com/Doyle59217/ZeroIG)
- π [Supplement](https://openaccess.thecvf.com/content/CVPR2024/supplemental/Shi_ZERO-IG_Zero-Shot_Illumination-Guided_CVPR_2024_supplemental.pdf)
## π οΈ Technical Details
- **Framework**: PyTorch
- **CUDA**: Supported for GPU acceleration
- **Memory**: Optimized for various image sizes
- **Dependencies**: See requirements.txt
## π₯ Authors
Yiqi Shi, Duo Liu, Liguo Zhang, Ye Tian, Xuezhi Xia, Xiaojing Fu
## π License
MIT License - see LICENSE file for details
---
*Built with β€οΈ using Gradio and Hugging Face Spaces* |