File size: 18,780 Bytes
d59f3c4
882d716
 
ccbc0a0
 
d59f3c4
 
 
2d074f9
9aea794
882d716
ccbc0a0
 
4e9fc8c
 
 
 
ccbc0a0
 
 
 
9aea794
ccbc0a0
9aea794
ccbc0a0
9aea794
 
 
 
 
 
 
d59f3c4
ccbc0a0
d59f3c4
 
9aea794
d59f3c4
 
9aea794
 
4e9fc8c
ccbc0a0
9aea794
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccbc0a0
 
 
9aea794
4e9fc8c
 
 
 
 
 
9aea794
 
 
 
 
 
 
 
 
 
 
 
 
 
4e9fc8c
 
9aea794
 
 
4e9fc8c
 
9aea794
 
 
4e9fc8c
 
9aea794
 
ccbc0a0
 
9aea794
 
ccbc0a0
 
 
9aea794
 
 
ccbc0a0
 
 
d59f3c4
 
 
 
 
 
 
 
9aea794
ccbc0a0
9aea794
d59f3c4
 
9aea794
 
 
 
 
 
 
 
 
 
 
 
 
d59f3c4
9aea794
 
 
d59f3c4
9aea794
 
c8308c5
9aea794
 
 
c8308c5
d59f3c4
9aea794
d59f3c4
9aea794
 
 
 
 
 
 
ccbc0a0
 
c8308c5
 
9aea794
 
 
 
4e9fc8c
9aea794
 
 
 
 
 
4e9fc8c
9aea794
 
 
c8308c5
ccbc0a0
 
 
 
a753f35
4e9fc8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9aea794
c8308c5
 
9aea794
 
 
eae91d6
9aea794
4e9fc8c
d59f3c4
c8308c5
d59f3c4
9aea794
c8308c5
9aea794
 
 
c8308c5
d59f3c4
c8308c5
 
 
9aea794
 
 
 
 
c8308c5
9aea794
c8308c5
d59f3c4
9aea794
 
 
 
 
 
c8308c5
 
9aea794
c8308c5
d59f3c4
9aea794
4e9fc8c
eae91d6
4e9fc8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eae91d6
9aea794
4e9fc8c
9aea794
 
 
 
 
 
 
 
 
c8308c5
9aea794
c8308c5
 
 
 
 
 
 
 
 
9aea794
c8308c5
9aea794
 
 
c8308c5
9aea794
 
c8308c5
 
 
 
 
9aea794
 
c8308c5
 
9aea794
c8308c5
 
9aea794
 
 
4e9fc8c
9aea794
4e9fc8c
 
 
 
 
 
 
 
 
9aea794
 
4e9fc8c
 
9aea794
 
 
eae91d6
9aea794
 
 
d59f3c4
 
9aea794
d59f3c4
 
 
 
2bf5132
ccbc0a0
 
9aea794
d59f3c4
 
9aea794
 
ccbc0a0
4e9fc8c
 
 
ccbc0a0
 
 
9aea794
 
ccbc0a0
9aea794
 
d59f3c4
9aea794
ccbc0a0
9aea794
 
 
 
 
 
 
 
 
 
 
c8308c5
9aea794
 
 
 
 
 
 
d59f3c4
9aea794
 
 
 
 
4e9fc8c
9aea794
 
4e9fc8c
9aea794
 
4e9fc8c
9aea794
4e9fc8c
c8308c5
9aea794
 
 
c8308c5
ccbc0a0
c8308c5
d59f3c4
ccbc0a0
9aea794
4e9fc8c
9aea794
 
 
 
 
2bf5132
ccbc0a0
4e9fc8c
ccbc0a0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
from flask import Flask, request, render_template_string
from PIL import Image
import numpy as np
import io
import base64
import torch
import torchvision.transforms as transforms
import os
import sys
import time

app = Flask(__name__)

# Add paths for different methods
sys.path.append('.')  # For ZeroIG (root folder)
sys.path.append('./CFWD')  # For CFWD method

HTML_TEMPLATE = """
<!DOCTYPE html>
<html>
<head>
    <title>Multi-Method Low-Light Enhancement</title>
    <style>
        body { font-family: Arial, sans-serif; max-width: 1200px; margin: 0 auto; padding: 20px; }
        .container { text-align: center; }
        .method-selection { margin: 20px 0; padding: 20px; background: #f8f9fa; border-radius: 10px; }
        .method-button { 
            margin: 5px; padding: 10px 20px; border: none; border-radius: 5px; cursor: pointer;
            font-size: 14px; transition: all 0.3s;
        }
        .method-button.active { background: #007bff; color: white; }
        .method-button.inactive { background: #e9ecef; color: #6c757d; }
        .upload-area { border: 2px dashed #ccc; padding: 40px; margin: 20px 0; border-radius: 10px; }
        .result { margin-top: 20px; }
        .comparison { display: flex; justify-content: space-around; flex-wrap: wrap; }
        .image-container { margin: 10px; }
        .image-container img { max-width: 350px; height: auto; border: 1px solid #ddd; border-radius: 5px; }
        .status { color: green; font-weight: bold; margin: 10px 0; }
        .error { color: red; }
        .processing { color: orange; font-weight: bold; }
        .method-info { background: #e3f2fd; padding: 15px; margin: 10px 0; border-radius: 5px; }
        .folder-status { background: #fff3cd; padding: 10px; margin: 10px 0; border-radius: 5px; font-family: monospace; }
    </style>
    <script>
        function selectMethod(method) {
            document.getElementById('selected_method').value = method;
            
            // Update button styles
            const buttons = document.querySelectorAll('.method-button');
            buttons.forEach(btn => {
                if (btn.dataset.method === method) {
                    btn.classList.add('active');
                    btn.classList.remove('inactive');
                } else {
                    btn.classList.add('inactive');
                    btn.classList.remove('active');
                }
            });
            
            // Update method info
            const infos = document.querySelectorAll('.method-info');
            infos.forEach(info => {
                info.style.display = info.dataset.method === method ? 'block' : 'none';
            });
        }
        
        window.onload = function() {
            selectMethod('zeroig');
        }
    </script>
</head>
<body>
    <div class="container">
        <h1>🌟 Multi-Method Low-Light Enhancement</h1>
        <p>Professional low-light image enhancement with multiple state-of-the-art methods</p>
        
        <div class="folder-status">
            <strong>πŸ“ Method Status:</strong><br>
            {{ method_status }}
        </div>
        
        <div class="method-selection">
            <h3>πŸ“š Select Enhancement Method:</h3>
            <button class="method-button" data-method="zeroig" onclick="selectMethod('zeroig')">
                🎯 ZeroIG (CVPR 2024)
            </button>
            <button class="method-button" data-method="cfwd" onclick="selectMethod('cfwd')">
                🌊 CFWD (CLIP-Fourier Wavelet)
            </button>
            <button class="method-button" data-method="both" onclick="selectMethod('both')">
                πŸ”„ Compare Both Methods
            </button>
            
            <div class="method-info" data-method="zeroig">
                <strong>🎯 ZeroIG:</strong> Zero-shot illumination-guided joint denoising and adaptive enhancement. 
                Fast processing, no training data required, prevents over-enhancement artifacts.
            </div>
            
            <div class="method-info" data-method="cfwd">
                <strong>🌊 CFWD:</strong> CLIP-Fourier Guided Wavelet Diffusion for low-light enhancement. 
                Uses diffusion models with CLIP guidance for state-of-the-art quality.
            </div>
            
            <div class="method-info" data-method="both">
                <strong>πŸ”„ Comparison Mode:</strong> Process with both methods to see the differences. 
                Takes longer but shows you the best of both approaches side-by-side.
            </div>
        </div>
        
        <form method="post" enctype="multipart/form-data">
            <input type="hidden" id="selected_method" name="method" value="zeroig">
            
            <div class="upload-area">
                <input type="file" name="image" accept="image/*" required>
                <br><br>
                <button type="submit" style="padding: 15px 30px; font-size: 16px; background: #28a745; color: white; border: none; border-radius: 5px;">
                    πŸš€ Enhance Image
                </button>
            </div>
        </form>
        
        {% if status %}
        <div class="status">{{ status }}</div>
        {% endif %}
        
        {% if error %}
        <div class="error">{{ error }}</div>
        {% endif %}
        
        {% if results %}
        <div class="result">
            <h3>🎯 Enhancement Results:</h3>
            <div class="comparison">
                <div class="image-container">
                    <h4>πŸ“· Original (Low-light)</h4>
                    <img src="data:image/png;base64,{{ results.original }}" alt="Original">
                </div>
                
                {% if results.zeroig %}
                <div class="image-container">
                    <h4>🎯 ZeroIG Enhanced</h4>
                    <img src="data:image/png;base64,{{ results.zeroig }}" alt="ZeroIG">
                    <br><br>
                    <a href="data:image/png;base64,{{ results.zeroig }}" download="zeroig_enhanced.png" 
                       style="background: #007bff; color: white; padding: 8px 16px; text-decoration: none; border-radius: 3px;">
                       πŸ“₯ Download ZeroIG
                    </a>
                </div>
                {% endif %}
                
                {% if results.cfwd %}
                <div class="image-container">
                    <h4>🌊 CFWD Enhanced</h4>
                    <img src="data:image/png;base64,{{ results.cfwd }}" alt="CFWD">
                    <br><br>
                    <a href="data:image/png;base64,{{ results.cfwd }}" download="cfwd_enhanced.png" 
                       style="background: #17a2b8; color: white; padding: 8px 16px; text-decoration: none; border-radius: 3px;">
                       πŸ“₯ Download CFWD
                    </a>
                </div>
                {% endif %}
            </div>
            
            {% if method_used %}
            <div style="margin-top: 20px; padding: 15px; background: #d4edda; border-radius: 5px;">
                <strong>Method Used:</strong> {{ method_used }}<br>
                <strong>Processing Time:</strong> {{ processing_time }}s
            </div>
            {% endif %}
        </div>
        {% endif %}
        
        <div style="margin-top: 40px; padding: 20px; background: #f8f9fa; border-radius: 10px;">
            <h3>πŸ“– About the Methods</h3>
            
            <div style="margin: 15px 0;">
                <strong>🎯 ZeroIG (CVPR 2024):</strong>
                <p>Zero-shot illumination-guided joint denoising and adaptive enhancement for low-light images.</p>
                <p>πŸ“„ <a href="https://openaccess.thecvf.com/content/CVPR2024/papers/Shi_ZERO-IG_Zero-Shot_Illumination-Guided_Joint_Denoising_and_Adaptive_Enhancement_for_Low-Light_CVPR_2024_paper.pdf">Paper</a> | 
                   πŸ’» <a href="https://github.com/Doyle59217/ZeroIG">Code</a></p>
            </div>
            
            <div style="margin: 15px 0;">
                <strong>🌊 CFWD (2024):</strong>
                <p>Low-light Image Enhancement via CLIP-Fourier Guided Wavelet Diffusion.</p>
                <p>πŸ“„ <a href="https://arxiv.org/abs/2401.03788">Paper</a> | 
                   πŸ’» <a href="https://github.com/hejh8/CFWD">Code</a></p>
            </div>
        </div>
    </div>
</body>
</html>
"""

def check_method_availability():
    """Check which methods are available"""
    status = []
    
    # Check ZeroIG (root folder)
    zeroig_files = ['model.py', 'loss.py', 'utils.py']
    zeroig_ok = all(os.path.exists(f) for f in zeroig_files)
    
    if zeroig_ok:
        # Check for weights
        weights_found = False
        for weight_path in ["./weights/LOL.pt", "./weights/model.pt"]:
            if os.path.exists(weight_path):
                weights_found = True
                break
        
        if weights_found:
            status.append("βœ… ZeroIG: Ready with trained weights")
        else:
            status.append("⚠️ ZeroIG: Available but no trained weights found")
    else:
        status.append("❌ ZeroIG: Missing required files")
    
    # Check CFWD folder
    cfwd_folder_exists = os.path.exists('./CFWD')
    if cfwd_folder_exists:
        cfwd_files = os.listdir('./CFWD')
        status.append(f"πŸ“ CFWD folder: Found with {len(cfwd_files)} files")
        
        # Check for common CFWD files
        expected_cfwd_files = ['test.py', 'model.py', 'datasets.py']
        found_files = [f for f in expected_cfwd_files if f in cfwd_files]
        if found_files:
            status.append(f"βœ… CFWD files found: {', '.join(found_files)}")
        else:
            status.append("⚠️ CFWD: Folder exists but expected files not found")
    else:
        status.append("❌ CFWD: Folder not found - please create ./CFWD/ and upload CFWD files")
    
    return "<br>".join(status)

class MultiMethodProcessor:
    def __init__(self):
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.zeroig_model = self.load_zeroig()
        self.cfwd_model = self.load_cfwd()
        print(f"Multi-method processor initialized on {self.device}")
    
    def load_zeroig(self):
        """Load ZeroIG model from root folder"""
        try:
            from model import Finetunemodel, Network
            
            # Try to load trained weights
            possible_weights = [
                "./weights/LOL.pt",
                "./weights/zeroig.pt", 
                "./weights/model.pt"
            ]
            
            for weight_path in possible_weights:
                if os.path.exists(weight_path):
                    try:
                        model = Finetunemodel(weight_path)
                        model.to(self.device)
                        model.eval()
                        print(f"βœ… ZeroIG loaded from {weight_path}")
                        return model
                    except Exception as e:
                        print(f"Failed to load ZeroIG from {weight_path}: {e}")
                        continue
            
            # Fallback to Network
            model = Network()
            model.to(self.device)
            model.eval()
            print("⚠️ ZeroIG using random weights")
            return model
            
        except Exception as e:
            print(f"❌ ZeroIG not available: {e}")
            return None
    
    def load_cfwd(self):
        """Load CFWD model from CFWD folder"""
        try:
            # Check if CFWD folder exists
            if not os.path.exists('./CFWD'):
                print("❌ CFWD folder not found")
                return None
            
            # Add CFWD folder to path and try importing
            sys.path.insert(0, './CFWD')
            
            # Try to import CFWD modules (will depend on actual CFWD structure)
            # This is a placeholder - you'll need to adapt based on actual CFWD files
            try:
                # Example imports - replace with actual CFWD imports
                # from model import CFWDModel  # Replace with actual CFWD model
                # model = CFWDModel()
                # model.load_weights('./CFWD/weights/cfwd_weights.pt')
                
                print("⚠️ CFWD: Import structure not yet implemented")
                return None
                
            except ImportError as e:
                print(f"❌ CFWD import failed: {e}")
                return None
            
        except Exception as e:
            print(f"❌ CFWD loading error: {e}")
            return None
    
    def enhance_with_zeroig(self, image):
        """Enhance image using ZeroIG"""
        if self.zeroig_model is None:
            return None, "ZeroIG model not available"
        
        try:
            # Resize if needed
            original_size = image.size
            max_size = 800
            if max(image.size) > max_size:
                ratio = max_size / max(image.size)
                new_size = tuple(int(dim * ratio) for dim in image.size)
                image = image.resize(new_size, Image.Resampling.LANCZOS)
            
            # Convert to tensor
            transform = transforms.ToTensor()
            input_tensor = transform(image).unsqueeze(0).to(self.device)
            
            # Run ZeroIG
            with torch.no_grad():
                if hasattr(self.zeroig_model, 'enhance') and hasattr(self.zeroig_model, 'denoise_1'):
                    enhanced, denoised = self.zeroig_model(input_tensor)
                    result_tensor = denoised
                else:
                    outputs = self.zeroig_model(input_tensor)
                    result_tensor = outputs[13]
            
            # Convert back to PIL
            result_tensor = result_tensor.squeeze(0).cpu().clamp(0, 1)
            enhanced_image = transforms.ToPILImage()(result_tensor)
            
            # Resize back if needed
            if enhanced_image.size != original_size:
                enhanced_image = enhanced_image.resize(original_size, Image.Resampling.LANCZOS)
            
            return enhanced_image, "ZeroIG enhancement successful"
            
        except Exception as e:
            return None, f"ZeroIG failed: {str(e)}"
    
    def enhance_with_cfwd(self, image):
        """Enhance image using CFWD"""
        if self.cfwd_model is None:
            # Placeholder enhancement until CFWD is implemented
            try:
                # Simple placeholder - replace with actual CFWD processing
                arr = np.array(image).astype(np.float32)
                enhanced = np.clip(arr * 2.2, 0, 255).astype(np.uint8)
                enhanced_image = Image.fromarray(enhanced)
                return enhanced_image, "CFWD placeholder (upload CFWD files to ./CFWD/ folder for real processing)"
            except Exception as e:
                return None, f"CFWD placeholder failed: {str(e)}"
        
        try:
            # TODO: Implement actual CFWD processing when files are uploaded
            # This will depend on the actual CFWD model structure
            pass
        except Exception as e:
            return None, f"CFWD failed: {str(e)}"

# Initialize processor
print("πŸš€ Loading multi-method processor...")
processor = MultiMethodProcessor()

def image_to_base64(image):
    """Convert PIL image to base64"""
    img_buffer = io.BytesIO()
    image.save(img_buffer, format='PNG')
    img_str = base64.b64encode(img_buffer.getvalue()).decode()
    return img_str

@app.route('/', methods=['GET', 'POST'])
def index():
    results = None
    status = None
    error = None
    method_used = None
    processing_time = None
    
    # Check method availability
    method_status = check_method_availability()
    
    if request.method == 'POST':
        try:
            file = request.files['image']
            method = request.form.get('method', 'zeroig')
            
            if file:
                print(f"Processing with method: {method}")
                start_time = time.time()
                
                # Load image
                image = Image.open(file.stream).convert('RGB')
                original_b64 = image_to_base64(image)
                
                results = {'original': original_b64}
                
                if method == 'zeroig':
                    enhanced, msg = processor.enhance_with_zeroig(image)
                    if enhanced:
                        results['zeroig'] = image_to_base64(enhanced)
                        status = f"βœ… ZeroIG: {msg}"
                    else:
                        error = f"❌ ZeroIG failed: {msg}"
                
                elif method == 'cfwd':
                    enhanced, msg = processor.enhance_with_cfwd(image)
                    if enhanced:
                        results['cfwd'] = image_to_base64(enhanced)
                        status = f"βœ… CFWD: {msg}"
                    else:
                        error = f"❌ CFWD failed: {msg}"
                
                elif method == 'both':
                    # Process with both methods
                    zeroig_enhanced, zeroig_msg = processor.enhance_with_zeroig(image)
                    cfwd_enhanced, cfwd_msg = processor.enhance_with_cfwd(image)
                    
                    status_msgs = []
                    if zeroig_enhanced:
                        results['zeroig'] = image_to_base64(zeroig_enhanced)
                        status_msgs.append(f"ZeroIG: {zeroig_msg}")
                    if cfwd_enhanced:
                        results['cfwd'] = image_to_base64(cfwd_enhanced)
                        status_msgs.append(f"CFWD: {cfwd_msg}")
                    
                    status = "βœ… " + " | ".join(status_msgs)
                
                end_time = time.time()
                processing_time = round(end_time - start_time, 2)
                method_used = method.upper()
                
        except Exception as e:
            error = f"Error processing image: {str(e)}"
            print(f"Error: {e}")
    
    return render_template_string(HTML_TEMPLATE,
                                  method_status=method_status,
                                  results=results,
                                  status=status,
                                  error=error,
                                  method_used=method_used,
                                  processing_time=processing_time)

if __name__ == '__main__':
    print("πŸš€ Starting Organized Multi-Method Enhancement App...")
    app.run(host='0.0.0.0', port=7860)