syedaoon commited on
Commit
d66ec3a
·
verified ·
1 Parent(s): 33a3538

Update loss.py

Browse files
Files changed (1) hide show
  1. loss.py +309 -307
loss.py CHANGED
@@ -1,307 +1,309 @@
1
- import torch
2
- import torch.nn as nn
3
- import torch.nn.functional as F
4
- import numpy as np
5
- import scipy.stats as st
6
- from utils import pair_downsampler,calculate_local_variance,LocalMean
7
-
8
- EPS = 1e-9
9
- PI = 22.0 / 7.0
10
-
11
-
12
- class LossFunction(nn.Module):
13
- def __init__(self):
14
- super(LossFunction, self).__init__()
15
- self._l2_loss = nn.MSELoss()
16
- self._l1_loss = nn.L1Loss()
17
- self.smooth_loss = SmoothLoss()
18
- self.texture_difference=TextureDifference()
19
- self.local_mean=LocalMean(patch_size=5)
20
- self.L_TV_loss=L_TV()
21
-
22
-
23
- def forward(self,input,L_pred1,L_pred2,L2,s2,s21,s22,H2,H11,H12,H13,s13,H14,s14,H3,s3,H3_pred,H4_pred,L_pred1_L_pred2_diff,H3_denoised1_H3_denoised2_diff,H2_blur,H3_blur):
24
- eps = 1e-9
25
- input = input + eps
26
-
27
- input_Y = L2.detach()[:, 2, :, :] * 0.299 + L2.detach()[:, 1, :, :] * 0.587 + L2.detach()[:, 0, :, :] * 0.144
28
- input_Y_mean = torch.mean(input_Y, dim=(1, 2))
29
- enhancement_factor = 0.5/ (input_Y_mean + eps)
30
- enhancement_factor = enhancement_factor.unsqueeze(1).unsqueeze(2).unsqueeze(3)
31
- enhancement_factor = torch.clamp(enhancement_factor, 1, 25)
32
- adjustment_ratio = torch.pow(0.7, -enhancement_factor) / enhancement_factor
33
- adjustment_ratio = adjustment_ratio.repeat(1, 3, 1, 1)
34
- normalized_low_light_layer = L2.detach() / s2
35
- normalized_low_light_layer = torch.clamp(normalized_low_light_layer, eps, 0.8)
36
- enhanced_brightness=torch.pow(L2.detach()*enhancement_factor, enhancement_factor)
37
- clamped_enhanced_brightness = torch.clamp(enhanced_brightness * adjustment_ratio, eps, 1)
38
- clamped_adjusted_low_light = torch.clamp(L2.detach() * enhancement_factor,eps,1)
39
- loss = 0
40
- #Enhance_loss
41
- loss += self._l2_loss(s2, clamped_enhanced_brightness) *700
42
- loss += self._l2_loss(normalized_low_light_layer, clamped_adjusted_low_light) *1000
43
- loss += self.smooth_loss(L2.detach(), s2) *5
44
- loss += self.L_TV_loss(s2)*1600
45
- #Loss_res_1
46
- L11, L12 = pair_downsampler(input)
47
- loss += self._l2_loss(L11, L_pred2) * 1000
48
- loss += self._l2_loss(L12, L_pred1) * 1000
49
- denoised1, denoised2 = pair_downsampler(L2)
50
- loss += self._l2_loss(L_pred1, denoised1) * 1000
51
- loss += self._l2_loss(L_pred2, denoised2) * 1000
52
- # Loss_res_2
53
- loss += self._l2_loss(H3_pred, torch.cat([H12.detach(), s22.detach()], 1)) * 1000
54
- loss += self._l2_loss(H4_pred, torch.cat([H11.detach(), s21.detach()], 1)) * 1000
55
- H3_denoised1, H3_denoised2 = pair_downsampler(H3)
56
- loss += self._l2_loss(H3_pred[:, 0:3, :, :], H3_denoised1) * 1000
57
- loss += self._l2_loss(H4_pred[:, 0:3, :, :], H3_denoised2) * 1000
58
- #Loss_color
59
- loss += self._l2_loss(H2_blur.detach(), H3_blur) * 10000
60
- #Loss_ill
61
- loss += self._l2_loss(s2.detach(), s3) * 1000
62
- #Loss_cons
63
- local_mean1 = self.local_mean(H3_denoised1)
64
- local_mean2 = self.local_mean(H3_denoised2)
65
- weighted_diff1 = (1 - H3_denoised1_H3_denoised2_diff) * local_mean1+H3_denoised1*H3_denoised1_H3_denoised2_diff
66
- weighted_diff2 = (1 - H3_denoised1_H3_denoised2_diff) * local_mean2+H3_denoised1*H3_denoised1_H3_denoised2_diff
67
- loss += self._l2_loss(H3_denoised1,weighted_diff1)* 10000
68
- loss += self._l2_loss(H3_denoised2, weighted_diff2)* 10000
69
- #Loss_Var
70
- noise_std = calculate_local_variance(H3 - H2)
71
- H2_var = calculate_local_variance(H2)
72
- loss += self._l2_loss(H2_var, noise_std) * 1000
73
- return loss
74
-
75
- def local_mean(self, image):
76
- padding = self.patch_size // 2
77
- image = F.pad(image, (padding, padding, padding, padding), mode='reflect')
78
- patches = image.unfold(2, self.patch_size, 1).unfold(3, self.patch_size, 1)
79
- return patches.mean(dim=(4, 5))
80
-
81
- def gauss_kernel(kernlen=21, nsig=3, channels=1):
82
- interval = (2 * nsig + 1.) / (kernlen)
83
- x = np.linspace(-nsig - interval / 2., nsig + interval / 2., kernlen + 1)
84
- kern1d = np.diff(st.norm.cdf(x))
85
- kernel_raw = np.sqrt(np.outer(kern1d, kern1d))
86
- kernel = kernel_raw / kernel_raw.sum()
87
- out_filter = np.array(kernel, dtype=np.float32)
88
- out_filter = out_filter.reshape((kernlen, kernlen, 1, 1))
89
- out_filter = np.repeat(out_filter, channels, axis=2)
90
-
91
- return out_filter
92
-
93
-
94
- class TextureDifference(nn.Module):
95
- def __init__(self, patch_size=5, constant_C=1e-5,threshold=0.975):
96
- super(TextureDifference, self).__init__()
97
- self.patch_size = patch_size
98
- self.constant_C = constant_C
99
- self.threshold = threshold
100
-
101
- def forward(self, image1, image2):
102
- # Convert RGB images to grayscale
103
- image1 = self.rgb_to_gray(image1)
104
- image2 = self.rgb_to_gray(image2)
105
-
106
- stddev1 = self.local_stddev(image1)
107
- stddev2 = self.local_stddev(image2)
108
- numerator = 2 * stddev1 * stddev2
109
- denominator = stddev1 ** 2 + stddev2 ** 2 + self.constant_C
110
- diff = numerator / denominator
111
-
112
- # Apply threshold to diff tensor
113
- binary_diff = torch.where(diff > self.threshold, torch.tensor(1.0, device=diff.device),
114
- torch.tensor(0.0, device=diff.device))
115
-
116
- return binary_diff
117
-
118
- def local_stddev(self, image):
119
- padding = self.patch_size // 2
120
- image = F.pad(image, (padding, padding, padding, padding), mode='reflect')
121
- patches = image.unfold(2, self.patch_size, 1).unfold(3, self.patch_size, 1)
122
- mean = patches.mean(dim=(4, 5), keepdim=True)
123
- squared_diff = (patches - mean) ** 2
124
- local_variance = squared_diff.mean(dim=(4, 5))
125
- local_stddev = torch.sqrt(local_variance+1e-9)
126
- return local_stddev
127
-
128
- def rgb_to_gray(self, image):
129
- # Convert RGB image to grayscale using the luminance formula
130
- gray_image = 0.144 * image[:, 0, :, :] + 0.5870 * image[:, 1, :, :] + 0.299 * image[:, 2, :, :]
131
- return gray_image.unsqueeze(1) # Add a channel dimension for compatibility
132
-
133
-
134
- class L_TV(nn.Module):
135
- def __init__(self,TVLoss_weight=1):
136
- super(L_TV,self).__init__()
137
- self.TVLoss_weight = TVLoss_weight
138
-
139
- def forward(self,x):
140
- batch_size = x.size()[0]
141
- h_x = x.size()[2]
142
- w_x = x.size()[3]
143
- count_h = (x.size()[2]-1) * x.size()[3]
144
- count_w = x.size()[2] * (x.size()[3] - 1)
145
- h_tv = torch.pow((x[:,:,1:,:]-x[:,:,:h_x-1,:]),2).sum()
146
- w_tv = torch.pow((x[:,:,:,1:]-x[:,:,:,:w_x-1]),2).sum()
147
- return self.TVLoss_weight*2*(h_tv/count_h+w_tv/count_w)/batch_size
148
-
149
- class Blur(nn.Module):
150
- def __init__(self, nc):
151
- super(Blur, self).__init__()
152
- self.nc = nc
153
- kernel = gauss_kernel(kernlen=21, nsig=3, channels=self.nc)
154
- kernel = torch.from_numpy(kernel).permute(2, 3, 0, 1).cuda()
155
- self.weight = nn.Parameter(data=kernel, requires_grad=False).cuda()
156
-
157
- def forward(self, x):
158
- if x.size(1) != self.nc:
159
- raise RuntimeError(
160
- "The channel of input [%d] does not match the preset channel [%d]" % (x.size(1), self.nc))
161
-
162
- x = F.conv2d(x, self.weight, stride=1, padding=10, groups=self.nc)
163
- return x
164
-
165
-
166
-
167
-
168
- class SmoothLoss(nn.Module):
169
- def __init__(self):
170
- super(SmoothLoss, self).__init__()
171
- self.sigma = 10
172
-
173
- def rgb2yCbCr(self, input_im):
174
-
175
- im_flat = input_im.contiguous().view(-1, 3).float()
176
- # [w,h,3] => [w*h,3]
177
- mat = torch.Tensor([[0.257, -0.148, 0.439], [0.564, -0.291, -0.368], [0.098, 0.439, -0.071]]).cuda()
178
- # [3,3]
179
- bias = torch.Tensor([16.0 / 255.0, 128.0 / 255.0, 128.0 / 255.0]).cuda()
180
- # [1,3]
181
- temp = im_flat.mm(mat) + bias
182
- # [w*h,3]*[3,3]+[1,3] => [w*h,3]
183
- out = temp.view(input_im.shape[0], 3, input_im.shape[2], input_im.shape[3])
184
- return out
185
-
186
- # output: output input:input
187
- def forward(self, input, output):
188
-
189
-
190
- self.output = output
191
- self.input = self.rgb2yCbCr(input)
192
- sigma_color = -1.0 / (2 * self.sigma * self.sigma)
193
- w1 = torch.exp(torch.sum(torch.pow(self.input[:, :, 1:, :] - self.input[:, :, :-1, :], 2), dim=1,
194
- keepdim=True) * sigma_color)
195
- w2 = torch.exp(torch.sum(torch.pow(self.input[:, :, :-1, :] - self.input[:, :, 1:, :], 2), dim=1,
196
- keepdim=True) * sigma_color)
197
- w3 = torch.exp(torch.sum(torch.pow(self.input[:, :, :, 1:] - self.input[:, :, :, :-1], 2), dim=1,
198
- keepdim=True) * sigma_color)
199
- w4 = torch.exp(torch.sum(torch.pow(self.input[:, :, :, :-1] - self.input[:, :, :, 1:], 2), dim=1,
200
- keepdim=True) * sigma_color)
201
- w5 = torch.exp(torch.sum(torch.pow(self.input[:, :, :-1, :-1] - self.input[:, :, 1:, 1:], 2), dim=1,
202
- keepdim=True) * sigma_color)
203
- w6 = torch.exp(torch.sum(torch.pow(self.input[:, :, 1:, 1:] - self.input[:, :, :-1, :-1], 2), dim=1,
204
- keepdim=True) * sigma_color)
205
- w7 = torch.exp(torch.sum(torch.pow(self.input[:, :, 1:, :-1] - self.input[:, :, :-1, 1:], 2), dim=1,
206
- keepdim=True) * sigma_color)
207
- w8 = torch.exp(torch.sum(torch.pow(self.input[:, :, :-1, 1:] - self.input[:, :, 1:, :-1], 2), dim=1,
208
- keepdim=True) * sigma_color)
209
- w9 = torch.exp(torch.sum(torch.pow(self.input[:, :, 2:, :] - self.input[:, :, :-2, :], 2), dim=1,
210
- keepdim=True) * sigma_color)
211
- w10 = torch.exp(torch.sum(torch.pow(self.input[:, :, :-2, :] - self.input[:, :, 2:, :], 2), dim=1,
212
- keepdim=True) * sigma_color)
213
- w11 = torch.exp(torch.sum(torch.pow(self.input[:, :, :, 2:] - self.input[:, :, :, :-2], 2), dim=1,
214
- keepdim=True) * sigma_color)
215
- w12 = torch.exp(torch.sum(torch.pow(self.input[:, :, :, :-2] - self.input[:, :, :, 2:], 2), dim=1,
216
- keepdim=True) * sigma_color)
217
- w13 = torch.exp(torch.sum(torch.pow(self.input[:, :, :-2, :-1] - self.input[:, :, 2:, 1:], 2), dim=1,
218
- keepdim=True) * sigma_color)
219
- w14 = torch.exp(torch.sum(torch.pow(self.input[:, :, 2:, 1:] - self.input[:, :, :-2, :-1], 2), dim=1,
220
- keepdim=True) * sigma_color)
221
- w15 = torch.exp(torch.sum(torch.pow(self.input[:, :, 2:, :-1] - self.input[:, :, :-2, 1:], 2), dim=1,
222
- keepdim=True) * sigma_color)
223
- w16 = torch.exp(torch.sum(torch.pow(self.input[:, :, :-2, 1:] - self.input[:, :, 2:, :-1], 2), dim=1,
224
- keepdim=True) * sigma_color)
225
- w17 = torch.exp(torch.sum(torch.pow(self.input[:, :, :-1, :-2] - self.input[:, :, 1:, 2:], 2), dim=1,
226
- keepdim=True) * sigma_color)
227
- w18 = torch.exp(torch.sum(torch.pow(self.input[:, :, 1:, 2:] - self.input[:, :, :-1, :-2], 2), dim=1,
228
- keepdim=True) * sigma_color)
229
- w19 = torch.exp(torch.sum(torch.pow(self.input[:, :, 1:, :-2] - self.input[:, :, :-1, 2:], 2), dim=1,
230
- keepdim=True) * sigma_color)
231
- w20 = torch.exp(torch.sum(torch.pow(self.input[:, :, :-1, 2:] - self.input[:, :, 1:, :-2], 2), dim=1,
232
- keepdim=True) * sigma_color)
233
- w21 = torch.exp(torch.sum(torch.pow(self.input[:, :, :-2, :-2] - self.input[:, :, 2:, 2:], 2), dim=1,
234
- keepdim=True) * sigma_color)
235
- w22 = torch.exp(torch.sum(torch.pow(self.input[:, :, 2:, 2:] - self.input[:, :, :-2, :-2], 2), dim=1,
236
- keepdim=True) * sigma_color)
237
- w23 = torch.exp(torch.sum(torch.pow(self.input[:, :, 2:, :-2] - self.input[:, :, :-2, 2:], 2), dim=1,
238
- keepdim=True) * sigma_color)
239
- w24 = torch.exp(torch.sum(torch.pow(self.input[:, :, :-2, 2:] - self.input[:, :, 2:, :-2], 2), dim=1,
240
- keepdim=True) * sigma_color)
241
- p = 1.0
242
-
243
- pixel_grad1 = w1 * torch.norm((self.output[:, :, 1:, :] - self.output[:, :, :-1, :]), p, dim=1, keepdim=True)
244
- pixel_grad2 = w2 * torch.norm((self.output[:, :, :-1, :] - self.output[:, :, 1:, :]), p, dim=1, keepdim=True)
245
- pixel_grad3 = w3 * torch.norm((self.output[:, :, :, 1:] - self.output[:, :, :, :-1]), p, dim=1, keepdim=True)
246
- pixel_grad4 = w4 * torch.norm((self.output[:, :, :, :-1] - self.output[:, :, :, 1:]), p, dim=1, keepdim=True)
247
- pixel_grad5 = w5 * torch.norm((self.output[:, :, :-1, :-1] - self.output[:, :, 1:, 1:]), p, dim=1, keepdim=True)
248
- pixel_grad6 = w6 * torch.norm((self.output[:, :, 1:, 1:] - self.output[:, :, :-1, :-1]), p, dim=1, keepdim=True)
249
- pixel_grad7 = w7 * torch.norm((self.output[:, :, 1:, :-1] - self.output[:, :, :-1, 1:]), p, dim=1, keepdim=True)
250
- pixel_grad8 = w8 * torch.norm((self.output[:, :, :-1, 1:] - self.output[:, :, 1:, :-1]), p, dim=1, keepdim=True)
251
- pixel_grad9 = w9 * torch.norm((self.output[:, :, 2:, :] - self.output[:, :, :-2, :]), p, dim=1, keepdim=True)
252
- pixel_grad10 = w10 * torch.norm((self.output[:, :, :-2, :] - self.output[:, :, 2:, :]), p, dim=1, keepdim=True)
253
- pixel_grad11 = w11 * torch.norm((self.output[:, :, :, 2:] - self.output[:, :, :, :-2]), p, dim=1, keepdim=True)
254
- pixel_grad12 = w12 * torch.norm((self.output[:, :, :, :-2] - self.output[:, :, :, 2:]), p, dim=1, keepdim=True)
255
- pixel_grad13 = w13 * torch.norm((self.output[:, :, :-2, :-1] - self.output[:, :, 2:, 1:]), p, dim=1,
256
- keepdim=True)
257
- pixel_grad14 = w14 * torch.norm((self.output[:, :, 2:, 1:] - self.output[:, :, :-2, :-1]), p, dim=1,
258
- keepdim=True)
259
- pixel_grad15 = w15 * torch.norm((self.output[:, :, 2:, :-1] - self.output[:, :, :-2, 1:]), p, dim=1,
260
- keepdim=True)
261
- pixel_grad16 = w16 * torch.norm((self.output[:, :, :-2, 1:] - self.output[:, :, 2:, :-1]), p, dim=1,
262
- keepdim=True)
263
- pixel_grad17 = w17 * torch.norm((self.output[:, :, :-1, :-2] - self.output[:, :, 1:, 2:]), p, dim=1,
264
- keepdim=True)
265
- pixel_grad18 = w18 * torch.norm((self.output[:, :, 1:, 2:] - self.output[:, :, :-1, :-2]), p, dim=1,
266
- keepdim=True)
267
- pixel_grad19 = w19 * torch.norm((self.output[:, :, 1:, :-2] - self.output[:, :, :-1, 2:]), p, dim=1,
268
- keepdim=True)
269
- pixel_grad20 = w20 * torch.norm((self.output[:, :, :-1, 2:] - self.output[:, :, 1:, :-2]), p, dim=1,
270
- keepdim=True)
271
- pixel_grad21 = w21 * torch.norm((self.output[:, :, :-2, :-2] - self.output[:, :, 2:, 2:]), p, dim=1,
272
- keepdim=True)
273
- pixel_grad22 = w22 * torch.norm((self.output[:, :, 2:, 2:] - self.output[:, :, :-2, :-2]), p, dim=1,
274
- keepdim=True)
275
- pixel_grad23 = w23 * torch.norm((self.output[:, :, 2:, :-2] - self.output[:, :, :-2, 2:]), p, dim=1,
276
- keepdim=True)
277
- pixel_grad24 = w24 * torch.norm((self.output[:, :, :-2, 2:] - self.output[:, :, 2:, :-2]), p, dim=1,
278
- keepdim=True)
279
-
280
- ReguTerm1 = torch.mean(pixel_grad1) \
281
- + torch.mean(pixel_grad2) \
282
- + torch.mean(pixel_grad3) \
283
- + torch.mean(pixel_grad4) \
284
- + torch.mean(pixel_grad5) \
285
- + torch.mean(pixel_grad6) \
286
- + torch.mean(pixel_grad7) \
287
- + torch.mean(pixel_grad8) \
288
- + torch.mean(pixel_grad9) \
289
- + torch.mean(pixel_grad10) \
290
- + torch.mean(pixel_grad11) \
291
- + torch.mean(pixel_grad12) \
292
- + torch.mean(pixel_grad13) \
293
- + torch.mean(pixel_grad14) \
294
- + torch.mean(pixel_grad15) \
295
- + torch.mean(pixel_grad16) \
296
- + torch.mean(pixel_grad17) \
297
- + torch.mean(pixel_grad18) \
298
- + torch.mean(pixel_grad19) \
299
- + torch.mean(pixel_grad20) \
300
- + torch.mean(pixel_grad21) \
301
- + torch.mean(pixel_grad22) \
302
- + torch.mean(pixel_grad23) \
303
- + torch.mean(pixel_grad24)
304
-
305
- total_term = ReguTerm1
306
- return total_term
307
-
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ import numpy as np
5
+ import scipy.stats as st
6
+ from utils import pair_downsampler,calculate_local_variance,LocalMean
7
+
8
+ EPS = 1e-9
9
+ PI = 22.0 / 7.0
10
+
11
+
12
+ class LossFunction(nn.Module):
13
+ def __init__(self):
14
+ super(LossFunction, self).__init__()
15
+ self._l2_loss = nn.MSELoss()
16
+ self._l1_loss = nn.L1Loss()
17
+ self.smooth_loss = SmoothLoss()
18
+ self.texture_difference=TextureDifference()
19
+ self.local_mean=LocalMean(patch_size=5)
20
+ self.L_TV_loss=L_TV()
21
+
22
+
23
+ def forward(self,input,L_pred1,L_pred2,L2,s2,s21,s22,H2,H11,H12,H13,s13,H14,s14,H3,s3,H3_pred,H4_pred,L_pred1_L_pred2_diff,H3_denoised1_H3_denoised2_diff,H2_blur,H3_blur):
24
+ eps = 1e-9
25
+ input = input + eps
26
+
27
+ input_Y = L2.detach()[:, 2, :, :] * 0.299 + L2.detach()[:, 1, :, :] * 0.587 + L2.detach()[:, 0, :, :] * 0.144
28
+ input_Y_mean = torch.mean(input_Y, dim=(1, 2))
29
+ enhancement_factor = 0.5/ (input_Y_mean + eps)
30
+ enhancement_factor = enhancement_factor.unsqueeze(1).unsqueeze(2).unsqueeze(3)
31
+ enhancement_factor = torch.clamp(enhancement_factor, 1, 25)
32
+ adjustment_ratio = torch.pow(0.7, -enhancement_factor) / enhancement_factor
33
+ adjustment_ratio = adjustment_ratio.repeat(1, 3, 1, 1)
34
+ normalized_low_light_layer = L2.detach() / s2
35
+ normalized_low_light_layer = torch.clamp(normalized_low_light_layer, eps, 0.8)
36
+ enhanced_brightness=torch.pow(L2.detach()*enhancement_factor, enhancement_factor)
37
+ clamped_enhanced_brightness = torch.clamp(enhanced_brightness * adjustment_ratio, eps, 1)
38
+ clamped_adjusted_low_light = torch.clamp(L2.detach() * enhancement_factor,eps,1)
39
+ loss = 0
40
+ #Enhance_loss
41
+ loss += self._l2_loss(s2, clamped_enhanced_brightness) *700
42
+ loss += self._l2_loss(normalized_low_light_layer, clamped_adjusted_low_light) *1000
43
+ loss += self.smooth_loss(L2.detach(), s2) *5
44
+ loss += self.L_TV_loss(s2)*1600
45
+ #Loss_res_1
46
+ L11, L12 = pair_downsampler(input)
47
+ loss += self._l2_loss(L11, L_pred2) * 1000
48
+ loss += self._l2_loss(L12, L_pred1) * 1000
49
+ denoised1, denoised2 = pair_downsampler(L2)
50
+ loss += self._l2_loss(L_pred1, denoised1) * 1000
51
+ loss += self._l2_loss(L_pred2, denoised2) * 1000
52
+ # Loss_res_2
53
+ loss += self._l2_loss(H3_pred, torch.cat([H12.detach(), s22.detach()], 1)) * 1000
54
+ loss += self._l2_loss(H4_pred, torch.cat([H11.detach(), s21.detach()], 1)) * 1000
55
+ H3_denoised1, H3_denoised2 = pair_downsampler(H3)
56
+ loss += self._l2_loss(H3_pred[:, 0:3, :, :], H3_denoised1) * 1000
57
+ loss += self._l2_loss(H4_pred[:, 0:3, :, :], H3_denoised2) * 1000
58
+ #Loss_color
59
+ loss += self._l2_loss(H2_blur.detach(), H3_blur) * 10000
60
+ #Loss_ill
61
+ loss += self._l2_loss(s2.detach(), s3) * 1000
62
+ #Loss_cons
63
+ local_mean1 = self.local_mean(H3_denoised1)
64
+ local_mean2 = self.local_mean(H3_denoised2)
65
+ weighted_diff1 = (1 - H3_denoised1_H3_denoised2_diff) * local_mean1+H3_denoised1*H3_denoised1_H3_denoised2_diff
66
+ weighted_diff2 = (1 - H3_denoised1_H3_denoised2_diff) * local_mean2+H3_denoised1*H3_denoised1_H3_denoised2_diff
67
+ loss += self._l2_loss(H3_denoised1,weighted_diff1)* 10000
68
+ loss += self._l2_loss(H3_denoised2, weighted_diff2)* 10000
69
+ #Loss_Var
70
+ noise_std = calculate_local_variance(H3 - H2)
71
+ H2_var = calculate_local_variance(H2)
72
+ loss += self._l2_loss(H2_var, noise_std) * 1000
73
+ return loss
74
+
75
+ def local_mean(self, image):
76
+ padding = self.patch_size // 2
77
+ image = F.pad(image, (padding, padding, padding, padding), mode='reflect')
78
+ patches = image.unfold(2, self.patch_size, 1).unfold(3, self.patch_size, 1)
79
+ return patches.mean(dim=(4, 5))
80
+
81
+ def gauss_kernel(kernlen=21, nsig=3, channels=1):
82
+ interval = (2 * nsig + 1.) / (kernlen)
83
+ x = np.linspace(-nsig - interval / 2., nsig + interval / 2., kernlen + 1)
84
+ kern1d = np.diff(st.norm.cdf(x))
85
+ kernel_raw = np.sqrt(np.outer(kern1d, kern1d))
86
+ kernel = kernel_raw / kernel_raw.sum()
87
+ out_filter = np.array(kernel, dtype=np.float32)
88
+ out_filter = out_filter.reshape((kernlen, kernlen, 1, 1))
89
+ out_filter = np.repeat(out_filter, channels, axis=2)
90
+
91
+ return out_filter
92
+
93
+
94
+ class TextureDifference(nn.Module):
95
+ def __init__(self, patch_size=5, constant_C=1e-5,threshold=0.975):
96
+ super(TextureDifference, self).__init__()
97
+ self.patch_size = patch_size
98
+ self.constant_C = constant_C
99
+ self.threshold = threshold
100
+
101
+ def forward(self, image1, image2):
102
+ # Convert RGB images to grayscale
103
+ image1 = self.rgb_to_gray(image1)
104
+ image2 = self.rgb_to_gray(image2)
105
+
106
+ stddev1 = self.local_stddev(image1)
107
+ stddev2 = self.local_stddev(image2)
108
+ numerator = 2 * stddev1 * stddev2
109
+ denominator = stddev1 ** 2 + stddev2 ** 2 + self.constant_C
110
+ diff = numerator / denominator
111
+
112
+ # Apply threshold to diff tensor
113
+ binary_diff = torch.where(diff > self.threshold, torch.tensor(1.0, device=diff.device),
114
+ torch.tensor(0.0, device=diff.device))
115
+
116
+ return binary_diff
117
+
118
+ def local_stddev(self, image):
119
+ padding = self.patch_size // 2
120
+ image = F.pad(image, (padding, padding, padding, padding), mode='reflect')
121
+ patches = image.unfold(2, self.patch_size, 1).unfold(3, self.patch_size, 1)
122
+ mean = patches.mean(dim=(4, 5), keepdim=True)
123
+ squared_diff = (patches - mean) ** 2
124
+ local_variance = squared_diff.mean(dim=(4, 5))
125
+ local_stddev = torch.sqrt(local_variance+1e-9)
126
+ return local_stddev
127
+
128
+ def rgb_to_gray(self, image):
129
+ # Convert RGB image to grayscale using the luminance formula
130
+ gray_image = 0.144 * image[:, 0, :, :] + 0.5870 * image[:, 1, :, :] + 0.299 * image[:, 2, :, :]
131
+ return gray_image.unsqueeze(1) # Add a channel dimension for compatibility
132
+
133
+
134
+ class L_TV(nn.Module):
135
+ def __init__(self,TVLoss_weight=1):
136
+ super(L_TV,self).__init__()
137
+ self.TVLoss_weight = TVLoss_weight
138
+
139
+ def forward(self,x):
140
+ batch_size = x.size()[0]
141
+ h_x = x.size()[2]
142
+ w_x = x.size()[3]
143
+ count_h = (x.size()[2]-1) * x.size()[3]
144
+ count_w = x.size()[2] * (x.size()[3] - 1)
145
+ h_tv = torch.pow((x[:,:,1:,:]-x[:,:,:h_x-1,:]),2).sum()
146
+ w_tv = torch.pow((x[:,:,:,1:]-x[:,:,:,:w_x-1]),2).sum()
147
+ return self.TVLoss_weight*2*(h_tv/count_h+w_tv/count_w)/batch_size
148
+
149
+ class Blur(nn.Module):
150
+ def __init__(self, nc):
151
+ super(Blur, self).__init__()
152
+ self.nc = nc
153
+ kernel = gauss_kernel(kernlen=21, nsig=3, channels=self.nc)
154
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
155
+ kernel = torch.from_numpy(kernel).permute(2, 3, 0, 1).to(device)
156
+ self.weight = nn.Parameter(data=kernel, requires_grad=False).to(device)
157
+
158
+ def forward(self, x):
159
+ if x.size(1) != self.nc:
160
+ raise RuntimeError(
161
+ "The channel of input [%d] does not match the preset channel [%d]" % (x.size(1), self.nc))
162
+
163
+ x = F.conv2d(x, self.weight, stride=1, padding=10, groups=self.nc)
164
+ return x
165
+
166
+
167
+
168
+
169
+ class SmoothLoss(nn.Module):
170
+ def __init__(self):
171
+ super(SmoothLoss, self).__init__()
172
+ self.sigma = 10
173
+
174
+ def rgb2yCbCr(self, input_im):
175
+
176
+ im_flat = input_im.contiguous().view(-1, 3).float()
177
+ # [w,h,3] => [w*h,3]
178
+ device = input_im.device # Use same device as input
179
+ mat = torch.Tensor([[0.257, -0.148, 0.439], [0.564, -0.291, -0.368], [0.098, 0.439, -0.071]]).to(device)
180
+ # [3,3]
181
+ bias = torch.Tensor([16.0 / 255.0, 128.0 / 255.0, 128.0 / 255.0]).to(device)
182
+ # [1,3]
183
+ temp = im_flat.mm(mat) + bias
184
+ # [w*h,3]*[3,3]+[1,3] => [w*h,3]
185
+ out = temp.view(input_im.shape[0], 3, input_im.shape[2], input_im.shape[3])
186
+ return out
187
+
188
+ # output: output input:input
189
+ def forward(self, input, output):
190
+
191
+
192
+ self.output = output
193
+ self.input = self.rgb2yCbCr(input)
194
+ sigma_color = -1.0 / (2 * self.sigma * self.sigma)
195
+ w1 = torch.exp(torch.sum(torch.pow(self.input[:, :, 1:, :] - self.input[:, :, :-1, :], 2), dim=1,
196
+ keepdim=True) * sigma_color)
197
+ w2 = torch.exp(torch.sum(torch.pow(self.input[:, :, :-1, :] - self.input[:, :, 1:, :], 2), dim=1,
198
+ keepdim=True) * sigma_color)
199
+ w3 = torch.exp(torch.sum(torch.pow(self.input[:, :, :, 1:] - self.input[:, :, :, :-1], 2), dim=1,
200
+ keepdim=True) * sigma_color)
201
+ w4 = torch.exp(torch.sum(torch.pow(self.input[:, :, :, :-1] - self.input[:, :, :, 1:], 2), dim=1,
202
+ keepdim=True) * sigma_color)
203
+ w5 = torch.exp(torch.sum(torch.pow(self.input[:, :, :-1, :-1] - self.input[:, :, 1:, 1:], 2), dim=1,
204
+ keepdim=True) * sigma_color)
205
+ w6 = torch.exp(torch.sum(torch.pow(self.input[:, :, 1:, 1:] - self.input[:, :, :-1, :-1], 2), dim=1,
206
+ keepdim=True) * sigma_color)
207
+ w7 = torch.exp(torch.sum(torch.pow(self.input[:, :, 1:, :-1] - self.input[:, :, :-1, 1:], 2), dim=1,
208
+ keepdim=True) * sigma_color)
209
+ w8 = torch.exp(torch.sum(torch.pow(self.input[:, :, :-1, 1:] - self.input[:, :, 1:, :-1], 2), dim=1,
210
+ keepdim=True) * sigma_color)
211
+ w9 = torch.exp(torch.sum(torch.pow(self.input[:, :, 2:, :] - self.input[:, :, :-2, :], 2), dim=1,
212
+ keepdim=True) * sigma_color)
213
+ w10 = torch.exp(torch.sum(torch.pow(self.input[:, :, :-2, :] - self.input[:, :, 2:, :], 2), dim=1,
214
+ keepdim=True) * sigma_color)
215
+ w11 = torch.exp(torch.sum(torch.pow(self.input[:, :, :, 2:] - self.input[:, :, :, :-2], 2), dim=1,
216
+ keepdim=True) * sigma_color)
217
+ w12 = torch.exp(torch.sum(torch.pow(self.input[:, :, :, :-2] - self.input[:, :, :, 2:], 2), dim=1,
218
+ keepdim=True) * sigma_color)
219
+ w13 = torch.exp(torch.sum(torch.pow(self.input[:, :, :-2, :-1] - self.input[:, :, 2:, 1:], 2), dim=1,
220
+ keepdim=True) * sigma_color)
221
+ w14 = torch.exp(torch.sum(torch.pow(self.input[:, :, 2:, 1:] - self.input[:, :, :-2, :-1], 2), dim=1,
222
+ keepdim=True) * sigma_color)
223
+ w15 = torch.exp(torch.sum(torch.pow(self.input[:, :, 2:, :-1] - self.input[:, :, :-2, 1:], 2), dim=1,
224
+ keepdim=True) * sigma_color)
225
+ w16 = torch.exp(torch.sum(torch.pow(self.input[:, :, :-2, 1:] - self.input[:, :, 2:, :-1], 2), dim=1,
226
+ keepdim=True) * sigma_color)
227
+ w17 = torch.exp(torch.sum(torch.pow(self.input[:, :, :-1, :-2] - self.input[:, :, 1:, 2:], 2), dim=1,
228
+ keepdim=True) * sigma_color)
229
+ w18 = torch.exp(torch.sum(torch.pow(self.input[:, :, 1:, 2:] - self.input[:, :, :-1, :-2], 2), dim=1,
230
+ keepdim=True) * sigma_color)
231
+ w19 = torch.exp(torch.sum(torch.pow(self.input[:, :, 1:, :-2] - self.input[:, :, :-1, 2:], 2), dim=1,
232
+ keepdim=True) * sigma_color)
233
+ w20 = torch.exp(torch.sum(torch.pow(self.input[:, :, :-1, 2:] - self.input[:, :, 1:, :-2], 2), dim=1,
234
+ keepdim=True) * sigma_color)
235
+ w21 = torch.exp(torch.sum(torch.pow(self.input[:, :, :-2, :-2] - self.input[:, :, 2:, 2:], 2), dim=1,
236
+ keepdim=True) * sigma_color)
237
+ w22 = torch.exp(torch.sum(torch.pow(self.input[:, :, 2:, 2:] - self.input[:, :, :-2, :-2], 2), dim=1,
238
+ keepdim=True) * sigma_color)
239
+ w23 = torch.exp(torch.sum(torch.pow(self.input[:, :, 2:, :-2] - self.input[:, :, :-2, 2:], 2), dim=1,
240
+ keepdim=True) * sigma_color)
241
+ w24 = torch.exp(torch.sum(torch.pow(self.input[:, :, :-2, 2:] - self.input[:, :, 2:, :-2], 2), dim=1,
242
+ keepdim=True) * sigma_color)
243
+ p = 1.0
244
+
245
+ pixel_grad1 = w1 * torch.norm((self.output[:, :, 1:, :] - self.output[:, :, :-1, :]), p, dim=1, keepdim=True)
246
+ pixel_grad2 = w2 * torch.norm((self.output[:, :, :-1, :] - self.output[:, :, 1:, :]), p, dim=1, keepdim=True)
247
+ pixel_grad3 = w3 * torch.norm((self.output[:, :, :, 1:] - self.output[:, :, :, :-1]), p, dim=1, keepdim=True)
248
+ pixel_grad4 = w4 * torch.norm((self.output[:, :, :, :-1] - self.output[:, :, :, 1:]), p, dim=1, keepdim=True)
249
+ pixel_grad5 = w5 * torch.norm((self.output[:, :, :-1, :-1] - self.output[:, :, 1:, 1:]), p, dim=1, keepdim=True)
250
+ pixel_grad6 = w6 * torch.norm((self.output[:, :, 1:, 1:] - self.output[:, :, :-1, :-1]), p, dim=1, keepdim=True)
251
+ pixel_grad7 = w7 * torch.norm((self.output[:, :, 1:, :-1] - self.output[:, :, :-1, 1:]), p, dim=1, keepdim=True)
252
+ pixel_grad8 = w8 * torch.norm((self.output[:, :, :-1, 1:] - self.output[:, :, 1:, :-1]), p, dim=1, keepdim=True)
253
+ pixel_grad9 = w9 * torch.norm((self.output[:, :, 2:, :] - self.output[:, :, :-2, :]), p, dim=1, keepdim=True)
254
+ pixel_grad10 = w10 * torch.norm((self.output[:, :, :-2, :] - self.output[:, :, 2:, :]), p, dim=1, keepdim=True)
255
+ pixel_grad11 = w11 * torch.norm((self.output[:, :, :, 2:] - self.output[:, :, :, :-2]), p, dim=1, keepdim=True)
256
+ pixel_grad12 = w12 * torch.norm((self.output[:, :, :, :-2] - self.output[:, :, :, 2:]), p, dim=1, keepdim=True)
257
+ pixel_grad13 = w13 * torch.norm((self.output[:, :, :-2, :-1] - self.output[:, :, 2:, 1:]), p, dim=1,
258
+ keepdim=True)
259
+ pixel_grad14 = w14 * torch.norm((self.output[:, :, 2:, 1:] - self.output[:, :, :-2, :-1]), p, dim=1,
260
+ keepdim=True)
261
+ pixel_grad15 = w15 * torch.norm((self.output[:, :, 2:, :-1] - self.output[:, :, :-2, 1:]), p, dim=1,
262
+ keepdim=True)
263
+ pixel_grad16 = w16 * torch.norm((self.output[:, :, :-2, 1:] - self.output[:, :, 2:, :-1]), p, dim=1,
264
+ keepdim=True)
265
+ pixel_grad17 = w17 * torch.norm((self.output[:, :, :-1, :-2] - self.output[:, :, 1:, 2:]), p, dim=1,
266
+ keepdim=True)
267
+ pixel_grad18 = w18 * torch.norm((self.output[:, :, 1:, 2:] - self.output[:, :, :-1, :-2]), p, dim=1,
268
+ keepdim=True)
269
+ pixel_grad19 = w19 * torch.norm((self.output[:, :, 1:, :-2] - self.output[:, :, :-1, 2:]), p, dim=1,
270
+ keepdim=True)
271
+ pixel_grad20 = w20 * torch.norm((self.output[:, :, :-1, 2:] - self.output[:, :, 1:, :-2]), p, dim=1,
272
+ keepdim=True)
273
+ pixel_grad21 = w21 * torch.norm((self.output[:, :, :-2, :-2] - self.output[:, :, 2:, 2:]), p, dim=1,
274
+ keepdim=True)
275
+ pixel_grad22 = w22 * torch.norm((self.output[:, :, 2:, 2:] - self.output[:, :, :-2, :-2]), p, dim=1,
276
+ keepdim=True)
277
+ pixel_grad23 = w23 * torch.norm((self.output[:, :, 2:, :-2] - self.output[:, :, :-2, 2:]), p, dim=1,
278
+ keepdim=True)
279
+ pixel_grad24 = w24 * torch.norm((self.output[:, :, :-2, 2:] - self.output[:, :, 2:, :-2]), p, dim=1,
280
+ keepdim=True)
281
+
282
+ ReguTerm1 = torch.mean(pixel_grad1) \
283
+ + torch.mean(pixel_grad2) \
284
+ + torch.mean(pixel_grad3) \
285
+ + torch.mean(pixel_grad4) \
286
+ + torch.mean(pixel_grad5) \
287
+ + torch.mean(pixel_grad6) \
288
+ + torch.mean(pixel_grad7) \
289
+ + torch.mean(pixel_grad8) \
290
+ + torch.mean(pixel_grad9) \
291
+ + torch.mean(pixel_grad10) \
292
+ + torch.mean(pixel_grad11) \
293
+ + torch.mean(pixel_grad12) \
294
+ + torch.mean(pixel_grad13) \
295
+ + torch.mean(pixel_grad14) \
296
+ + torch.mean(pixel_grad15) \
297
+ + torch.mean(pixel_grad16) \
298
+ + torch.mean(pixel_grad17) \
299
+ + torch.mean(pixel_grad18) \
300
+ + torch.mean(pixel_grad19) \
301
+ + torch.mean(pixel_grad20) \
302
+ + torch.mean(pixel_grad21) \
303
+ + torch.mean(pixel_grad22) \
304
+ + torch.mean(pixel_grad23) \
305
+ + torch.mean(pixel_grad24)
306
+
307
+ total_term = ReguTerm1
308
+ return total_term
309
+