# app.py (Final Version with gr.State for Robust State Management) import gradio as gr import tensorflow as tf import pickle import numpy as np # --- 1. CONFIGURATION & MODEL LOADING --- MAX_SEQ_LENGTH = 30 print("--- App Starting Up ---") print("Loading models and tokenizers...") try: successor_model = tf.keras.models.load_model('successor_model.h5') with open('successor_model_tokenizers.pkl', 'rb') as f: successor_tokenizers = pickle.load(f) predecessor_model = tf.keras.models.load_model('predecessor_model.h5') with open('predecessor_model_tokenizers.pkl', 'rb') as f: predecessor_tokenizers = pickle.load(f) print("Models and tokenizers loaded successfully.") except Exception as e: print(f"FATAL ERROR loading files: {e}") successor_model, predecessor_model = None, None # --- 2. THE CORE PREDICTION LOGIC --- # This function is the same, but it will now receive its input from the reliable gr.State def predict_next_state(model, tokenizers, current_state_dict): if not model or not tokenizers or not current_state_dict: return {"error": "Model or state is not loaded"}, "Error", "Error", "Error" # Prepare input data from the state dictionary input_data = { 'current_unit_name': [current_state_dict['unit_name']], 'current_analogy': [current_state_dict['analogy']], 'current_commentary': [current_state_dict['commentary']] } processed_input = {} for col, text_list in input_data.items(): sequences = tokenizers[col].texts_to_sequences(text_list) padded_sequences = tf.keras.preprocessing.sequence.pad_sequences(sequences, maxlen=MAX_SEQ_LENGTH, padding='post') processed_input[col] = padded_sequences predictions = model.predict(processed_input) # Decode prediction target_texts = {} output_cols = ['target_unit_name', 'target_analogy', 'target_commentary'] for i, col in enumerate(output_cols): pred_indices = np.argmax(predictions[i], axis=-1) predicted_sequence = tokenizers[col].sequences_to_texts(pred_indices)[0] clean_text = ' '.join([word for word in predicted_sequence.split() if word not in ['', 'end']]) target_texts[col] = clean_text.strip() print(f"Decoded Unit Name: {target_texts['target_unit_name']}") # Create the new state dictionary new_state = { 'unit_name': target_texts['target_unit_name'], 'analogy': target_texts['target_analogy'], 'commentary': target_texts['target_commentary'] } # Handle "Infinity" Sentinel if "end of knowledge" in new_state['unit_name'].lower(): direction = "larger" if model == successor_model else "smaller" prefix = "Giga-" if direction == "larger" else "pico-" new_state['unit_name'] = f"{prefix}{current_state_dict['unit_name']}" new_state['analogy'] = "A procedurally generated unit beyond the AI's known universe." new_state['commentary'] = "This represents a step into true infinity, where rules replace learned knowledge." # Return the new state object and the values for the textboxes return new_state, new_state['unit_name'], new_state['analogy'], new_state['commentary'] # --- WRAPPER FUNCTIONS --- # They now take the state dictionary as input and return the new state dictionary def go_larger(current_state): print("\n>>> 'Go Larger' button clicked. Using SUCCESSOR model.") return predict_next_state(successor_model, successor_tokenizers, current_state) def go_smaller(current_state): print("\n>>> 'Go Smaller' button clicked. Using PREDECESSOR model.") return predict_next_state(predecessor_model, predecessor_tokenizers, current_state) # --- 3. THE GRADIO USER INTERFACE (RE-ARCHITECTED) --- initial_state = { "unit_name": "Byte", "analogy": "a single character of text, like 'R'", "commentary": "From binary choices, a building block is formed, ready to hold a single, recognizable symbol." } with gr.Blocks(theme=gr.themes.Soft(primary_hue="sky")) as demo: gr.Markdown("# 🤖 Digital Scale Explorer AI") gr.Markdown("An AI trained from scratch to explore the infinite ladder of data sizes. Click the buttons to traverse the universe of data!") # *** THIS IS THE KEY CHANGE *** # Create an invisible component to reliably hold our state app_state = gr.State(value=initial_state) with gr.Row(): unit_name_out = gr.Textbox(value=initial_state['unit_name'], label="Unit Name", interactive=False) analogy_out = gr.Textbox(value=initial_state['analogy'], label="Analogy", lines=4, interactive=False) commentary_out = gr.Textbox(value=initial_state['commentary'], label="AI Commentary", lines=3, interactive=False) with gr.Row(): smaller_btn = gr.Button("Go Smaller ⬇️", variant="secondary", size="lg") larger_btn = gr.Button("Go Larger ⬆️", variant="primary", size="lg") # --- The button clicks now use the app_state as their primary input and output --- larger_btn.click( fn=go_larger, inputs=[app_state], # The INPUT is the reliable state object # The OUTPUT is the new state object AND the values for the textboxes outputs=[app_state, unit_name_out, analogy_out, commentary_out] ) smaller_btn.click( fn=go_smaller, inputs=[app_state], # The INPUT is the reliable state object outputs=[app_state, unit_name_out, analogy_out, commentary_out] ) if __name__ == "__main__": demo.launch()