Update app.py
Browse files
app.py
CHANGED
|
@@ -1,8 +1,60 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
def add_text(history, text):
|
|
@@ -19,7 +71,7 @@ def bot(history):
|
|
| 19 |
else:
|
| 20 |
prompt = prompt + "\nAssistant: "
|
| 21 |
|
| 22 |
-
response =
|
| 23 |
history[-1][1] = response
|
| 24 |
return history
|
| 25 |
|
|
@@ -32,7 +84,7 @@ def regenerate(history):
|
|
| 32 |
else:
|
| 33 |
prompt = prompt + "\nAssistant: "
|
| 34 |
|
| 35 |
-
response =
|
| 36 |
history[-1][1] = response
|
| 37 |
return history
|
| 38 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import requests
|
| 4 |
+
from transformers import BloomForCausalLM, BloomTokenizerFast
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
repo_id = 'szzzzz/chatbot_bloom_560m'
|
| 8 |
+
os.mkdir('./chatbot')
|
| 9 |
+
path = huggingface_hub.snapshot_download(
|
| 10 |
+
repo_id=repo_id, cache_dir='./chatbot',ignore_patterns = "*bin"
|
| 11 |
+
)
|
| 12 |
+
url = huggingface_hub.file_download.hf_hub_url(repo_id, "pytorch_model.bin")
|
| 13 |
+
tokenizer = BloomTokenizerFast.from_pretrained(path)
|
| 14 |
+
state_dict = torch.load(
|
| 15 |
+
io.BytesIO(requests.get(url).content), map_location=torch.device("cpu")
|
| 16 |
+
)
|
| 17 |
+
model = BloomForCausalLM.from_pretrained(
|
| 18 |
+
pretrained_model_name_or_path=None,
|
| 19 |
+
state_dict=state_dict,
|
| 20 |
+
config=f"{path}/config.json",
|
| 21 |
+
)
|
| 22 |
+
max_length=1024
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def generate(inputs: str) -> str:
|
| 26 |
+
"""generate content on inputs .
|
| 27 |
+
|
| 28 |
+
Args:
|
| 29 |
+
inputs (str):
|
| 30 |
+
example :'Human: 你好 .\n \nAssistant: '
|
| 31 |
+
|
| 32 |
+
Returns:
|
| 33 |
+
str:
|
| 34 |
+
bot response
|
| 35 |
+
example : '你好!我是你的ai助手!'
|
| 36 |
+
|
| 37 |
+
"""
|
| 38 |
+
input_text = tokenizer.bos_token + inputs
|
| 39 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
| 40 |
+
_, input_len = input_ids.shape
|
| 41 |
+
if input_len >= max_length - 4:
|
| 42 |
+
res = "对话超过字数限制,请重新开始."
|
| 43 |
+
return res
|
| 44 |
+
pred_ids = model.generate(
|
| 45 |
+
input_ids,
|
| 46 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 47 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 48 |
+
bos_token_id=tokenizer.bos_token_id,
|
| 49 |
+
do_sample=True,
|
| 50 |
+
temperature=0.6,
|
| 51 |
+
top_p=0.8,
|
| 52 |
+
max_new_tokens=max_length - input_len,
|
| 53 |
+
repetition_penalty=1.2,
|
| 54 |
+
)
|
| 55 |
+
pred = pred_ids[0][input_len:]
|
| 56 |
+
res = tokenizer.decode(pred, skip_special_tokens=True)
|
| 57 |
+
return res
|
| 58 |
|
| 59 |
|
| 60 |
def add_text(history, text):
|
|
|
|
| 71 |
else:
|
| 72 |
prompt = prompt + "\nAssistant: "
|
| 73 |
|
| 74 |
+
response = generate(prompt)
|
| 75 |
history[-1][1] = response
|
| 76 |
return history
|
| 77 |
|
|
|
|
| 84 |
else:
|
| 85 |
prompt = prompt + "\nAssistant: "
|
| 86 |
|
| 87 |
+
response = generate(prompt)
|
| 88 |
history[-1][1] = response
|
| 89 |
return history
|
| 90 |
|