Spaces:
Sleeping
Sleeping
backup
Browse files- .gitattributes +5 -0
- README.md +1 -1
- app.py +38 -57
- examples/1727808849.jpg +3 -0
- examples/1727809389.jpg +3 -0
- examples/Birch MWF014-0001.jpg +3 -0
- examples/frame_000036.jpg +3 -0
- examples/frame_000168.jpg +3 -0
- requirements.txt +8 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,8 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
examples/frame_000168.jpg filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
examples/1727808849.jpg filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
examples/1727809389.jpg filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
examples/Birch[[:space:]]MWF014-0001.jpg filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
examples/frame_000036.jpg filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
title: FireNet LLama 3.2
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: gray
|
| 5 |
colorTo: red
|
| 6 |
sdk: gradio
|
|
|
|
| 1 |
---
|
| 2 |
title: FireNet LLama 3.2
|
| 3 |
+
emoji: 🔥
|
| 4 |
colorFrom: gray
|
| 5 |
colorTo: red
|
| 6 |
sdk: gradio
|
app.py
CHANGED
|
@@ -1,14 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
import gradio as gr
|
|
|
|
|
|
|
| 3 |
import torch
|
| 4 |
-
from PIL import Image
|
| 5 |
-
from transformers import MllamaForConditionalGeneration, AutoProcessor
|
| 6 |
-
from peft import PeftModel
|
| 7 |
from huggingface_hub import login
|
| 8 |
-
import
|
| 9 |
-
|
| 10 |
-
import
|
| 11 |
-
import base64
|
| 12 |
|
| 13 |
|
| 14 |
def check_environment():
|
|
@@ -22,44 +24,19 @@ def check_environment():
|
|
| 22 |
)
|
| 23 |
|
| 24 |
|
| 25 |
-
#
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
# Load model and processor (do this outside the inference function to avoid reloading)
|
| 30 |
-
# base_model_path = (
|
| 31 |
-
# "taesiri/BugsBunny-LLama-3.2-11B-Vision-BaseCaptioner-Medium-FullModel"
|
| 32 |
-
# )
|
| 33 |
|
| 34 |
-
# processor = AutoProcessor.from_pretrained(base_model_path)
|
| 35 |
-
# model = MllamaForConditionalGeneration.from_pretrained(
|
| 36 |
-
# base_model_path,
|
| 37 |
-
# torch_dtype=torch.bfloat16,
|
| 38 |
-
# device_map="cuda",
|
| 39 |
-
# cache_dir="./",
|
| 40 |
-
# )
|
| 41 |
-
# #
|
| 42 |
-
# odel = PeftModel.from_pretrained(model, lora_weights_path)
|
| 43 |
|
| 44 |
-
|
| 45 |
-
from transformers import MllamaForConditionalGeneration, AutoProcessor
|
| 46 |
import torch
|
|
|
|
| 47 |
|
| 48 |
-
|
| 49 |
-
local_model_path = "../merged-llama-3.2-dummy"
|
| 50 |
-
|
| 51 |
-
# Load model and processor (do this outside the inference function to avoid reloading)
|
| 52 |
-
base_model_path = (
|
| 53 |
-
local_model_path
|
| 54 |
-
)
|
| 55 |
-
# lora_weights_path = "taesiri/BugsBunny-LLama-3.2-11B-Vision-Base-Medium-LoRA"
|
| 56 |
|
| 57 |
processor = AutoProcessor.from_pretrained(base_model_path)
|
| 58 |
model = MllamaForConditionalGeneration.from_pretrained(
|
| 59 |
-
base_model_path,
|
| 60 |
-
torch_dtype=torch.bfloat16,
|
| 61 |
-
device_map="cuda",
|
| 62 |
-
cache_dir="./"
|
| 63 |
)
|
| 64 |
|
| 65 |
model.tie_weights()
|
|
@@ -94,6 +71,7 @@ def create_color_palette_image(colors):
|
|
| 94 |
return None
|
| 95 |
|
| 96 |
|
|
|
|
| 97 |
def inference(image):
|
| 98 |
if image is None:
|
| 99 |
return ["Please provide an image"] * 4
|
|
@@ -111,7 +89,10 @@ def inference(image):
|
|
| 111 |
"role": "user",
|
| 112 |
"content": [
|
| 113 |
{"type": "image"},
|
| 114 |
-
{
|
|
|
|
|
|
|
|
|
|
| 115 |
],
|
| 116 |
}
|
| 117 |
]
|
|
@@ -139,12 +120,12 @@ def inference(image):
|
|
| 139 |
try:
|
| 140 |
json_str = result.strip().split("assistant\n")[1].strip()
|
| 141 |
parsed_json = json.loads(json_str)
|
| 142 |
-
|
| 143 |
# Create specific JSON subsets for each section
|
| 144 |
fire_analysis = {
|
| 145 |
"predictions": parsed_json.get("predictions", "N/A"),
|
| 146 |
"description": parsed_json.get("description", "No description available"),
|
| 147 |
-
"confidence_scores": parsed_json.get("confidence_score", {})
|
| 148 |
}
|
| 149 |
|
| 150 |
environment_analysis = {
|
|
@@ -153,12 +134,14 @@ def inference(image):
|
|
| 153 |
|
| 154 |
detection_analysis = {
|
| 155 |
"detections": parsed_json.get("detections", []),
|
| 156 |
-
"detection_count": len(parsed_json.get("detections", []))
|
| 157 |
}
|
| 158 |
|
| 159 |
report_analysis = {
|
| 160 |
"uncertainty_factors": parsed_json.get("uncertainty_factors", []),
|
| 161 |
-
"false_positive_indicators": parsed_json.get(
|
|
|
|
|
|
|
| 162 |
}
|
| 163 |
|
| 164 |
return (
|
|
@@ -169,7 +152,7 @@ def inference(image):
|
|
| 169 |
json_str,
|
| 170 |
"",
|
| 171 |
"Analysis complete",
|
| 172 |
-
parsed_json
|
| 173 |
)
|
| 174 |
except Exception as e:
|
| 175 |
print("DEBUG: Error processing response:", e)
|
|
@@ -181,7 +164,7 @@ def inference(image):
|
|
| 181 |
str(result),
|
| 182 |
str(e),
|
| 183 |
"Error",
|
| 184 |
-
{}
|
| 185 |
)
|
| 186 |
|
| 187 |
|
|
@@ -197,17 +180,19 @@ with gr.Blocks() as demo:
|
|
| 197 |
elem_id="large-image",
|
| 198 |
)
|
| 199 |
submit_btn = gr.Button("Analyze Image", variant="primary")
|
| 200 |
-
|
| 201 |
-
#
|
| 202 |
gr.Examples(
|
| 203 |
examples=[
|
| 204 |
-
"examples/
|
| 205 |
-
"examples/
|
| 206 |
-
"examples/
|
|
|
|
|
|
|
| 207 |
],
|
| 208 |
inputs=image_input,
|
| 209 |
label="Example Images",
|
| 210 |
-
examples_per_page=
|
| 211 |
)
|
| 212 |
|
| 213 |
with gr.Tabs() as tabs:
|
|
@@ -216,30 +201,26 @@ with gr.Blocks() as demo:
|
|
| 216 |
with gr.Column():
|
| 217 |
fire_output = gr.JSON(
|
| 218 |
label="Fire Details",
|
| 219 |
-
lines=4,
|
| 220 |
)
|
| 221 |
with gr.Column():
|
| 222 |
environment_output = gr.JSON(
|
| 223 |
label="Environment Details",
|
| 224 |
-
lines=4,
|
| 225 |
)
|
| 226 |
with gr.Row():
|
| 227 |
with gr.Column():
|
| 228 |
detection_output = gr.JSON(
|
| 229 |
label="Detection Details",
|
| 230 |
-
lines=4,
|
| 231 |
)
|
| 232 |
with gr.Column():
|
| 233 |
report_output = gr.JSON(
|
| 234 |
label="Report Details",
|
| 235 |
-
lines=4,
|
| 236 |
)
|
| 237 |
|
| 238 |
with gr.Tab("JSON Output", id=0):
|
| 239 |
json_output = gr.JSON(
|
| 240 |
label="Detailed JSON Results",
|
| 241 |
)
|
| 242 |
-
|
| 243 |
with gr.Tab("Raw Output"):
|
| 244 |
raw_output = gr.Textbox(
|
| 245 |
label="Raw JSON Response",
|
|
@@ -264,4 +245,4 @@ with gr.Blocks() as demo:
|
|
| 264 |
],
|
| 265 |
)
|
| 266 |
|
| 267 |
-
demo.launch(share=True)
|
|
|
|
| 1 |
+
import base64
|
| 2 |
+
import io
|
| 3 |
+
import json
|
| 4 |
import os
|
| 5 |
+
|
| 6 |
import gradio as gr
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
import spaces
|
| 9 |
import torch
|
|
|
|
|
|
|
|
|
|
| 10 |
from huggingface_hub import login
|
| 11 |
+
from peft import PeftModel
|
| 12 |
+
from PIL import Image
|
| 13 |
+
from transformers import AutoProcessor, MllamaForConditionalGeneration
|
|
|
|
| 14 |
|
| 15 |
|
| 16 |
def check_environment():
|
|
|
|
| 24 |
)
|
| 25 |
|
| 26 |
|
| 27 |
+
# Login to Hugging Face
|
| 28 |
+
check_environment()
|
| 29 |
+
login(token=os.environ["HF_TOKEN"], add_to_git_credential=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
|
|
|
|
|
|
| 32 |
import torch
|
| 33 |
+
from transformers import AutoProcessor, MllamaForConditionalGeneration
|
| 34 |
|
| 35 |
+
base_model_path = "taesiri/FireNet-LLama-3.2-11B-Vision-Base"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
processor = AutoProcessor.from_pretrained(base_model_path)
|
| 38 |
model = MllamaForConditionalGeneration.from_pretrained(
|
| 39 |
+
base_model_path, torch_dtype=torch.bfloat16, device_map="cuda"
|
|
|
|
|
|
|
|
|
|
| 40 |
)
|
| 41 |
|
| 42 |
model.tie_weights()
|
|
|
|
| 71 |
return None
|
| 72 |
|
| 73 |
|
| 74 |
+
@spaces.GPU
|
| 75 |
def inference(image):
|
| 76 |
if image is None:
|
| 77 |
return ["Please provide an image"] * 4
|
|
|
|
| 89 |
"role": "user",
|
| 90 |
"content": [
|
| 91 |
{"type": "image"},
|
| 92 |
+
{
|
| 93 |
+
"type": "text",
|
| 94 |
+
"text": "Analyze this image for fire, smoke, haze, or other related conditions.",
|
| 95 |
+
},
|
| 96 |
],
|
| 97 |
}
|
| 98 |
]
|
|
|
|
| 120 |
try:
|
| 121 |
json_str = result.strip().split("assistant\n")[1].strip()
|
| 122 |
parsed_json = json.loads(json_str)
|
| 123 |
+
|
| 124 |
# Create specific JSON subsets for each section
|
| 125 |
fire_analysis = {
|
| 126 |
"predictions": parsed_json.get("predictions", "N/A"),
|
| 127 |
"description": parsed_json.get("description", "No description available"),
|
| 128 |
+
"confidence_scores": parsed_json.get("confidence_score", {}),
|
| 129 |
}
|
| 130 |
|
| 131 |
environment_analysis = {
|
|
|
|
| 134 |
|
| 135 |
detection_analysis = {
|
| 136 |
"detections": parsed_json.get("detections", []),
|
| 137 |
+
"detection_count": len(parsed_json.get("detections", [])),
|
| 138 |
}
|
| 139 |
|
| 140 |
report_analysis = {
|
| 141 |
"uncertainty_factors": parsed_json.get("uncertainty_factors", []),
|
| 142 |
+
"false_positive_indicators": parsed_json.get(
|
| 143 |
+
"false_positive_indicators", []
|
| 144 |
+
),
|
| 145 |
}
|
| 146 |
|
| 147 |
return (
|
|
|
|
| 152 |
json_str,
|
| 153 |
"",
|
| 154 |
"Analysis complete",
|
| 155 |
+
parsed_json,
|
| 156 |
)
|
| 157 |
except Exception as e:
|
| 158 |
print("DEBUG: Error processing response:", e)
|
|
|
|
| 164 |
str(result),
|
| 165 |
str(e),
|
| 166 |
"Error",
|
| 167 |
+
{},
|
| 168 |
)
|
| 169 |
|
| 170 |
|
|
|
|
| 180 |
elem_id="large-image",
|
| 181 |
)
|
| 182 |
submit_btn = gr.Button("Analyze Image", variant="primary")
|
| 183 |
+
|
| 184 |
+
# Updated examples
|
| 185 |
gr.Examples(
|
| 186 |
examples=[
|
| 187 |
+
"examples/1727808849.jpg",
|
| 188 |
+
"examples/1727809389.jpg",
|
| 189 |
+
"examples/Birch MWF014-0001.jpg",
|
| 190 |
+
"examples/frame_000036.jpg",
|
| 191 |
+
"examples/frame_000168.jpg",
|
| 192 |
],
|
| 193 |
inputs=image_input,
|
| 194 |
label="Example Images",
|
| 195 |
+
examples_per_page=5,
|
| 196 |
)
|
| 197 |
|
| 198 |
with gr.Tabs() as tabs:
|
|
|
|
| 201 |
with gr.Column():
|
| 202 |
fire_output = gr.JSON(
|
| 203 |
label="Fire Details",
|
|
|
|
| 204 |
)
|
| 205 |
with gr.Column():
|
| 206 |
environment_output = gr.JSON(
|
| 207 |
label="Environment Details",
|
|
|
|
| 208 |
)
|
| 209 |
with gr.Row():
|
| 210 |
with gr.Column():
|
| 211 |
detection_output = gr.JSON(
|
| 212 |
label="Detection Details",
|
|
|
|
| 213 |
)
|
| 214 |
with gr.Column():
|
| 215 |
report_output = gr.JSON(
|
| 216 |
label="Report Details",
|
|
|
|
| 217 |
)
|
| 218 |
|
| 219 |
with gr.Tab("JSON Output", id=0):
|
| 220 |
json_output = gr.JSON(
|
| 221 |
label="Detailed JSON Results",
|
| 222 |
)
|
| 223 |
+
|
| 224 |
with gr.Tab("Raw Output"):
|
| 225 |
raw_output = gr.Textbox(
|
| 226 |
label="Raw JSON Response",
|
|
|
|
| 245 |
],
|
| 246 |
)
|
| 247 |
|
| 248 |
+
demo.launch(share=True)
|
examples/1727808849.jpg
ADDED
|
Git LFS Details
|
examples/1727809389.jpg
ADDED
|
Git LFS Details
|
examples/Birch MWF014-0001.jpg
ADDED
|
Git LFS Details
|
examples/frame_000036.jpg
ADDED
|
Git LFS Details
|
examples/frame_000168.jpg
ADDED
|
Git LFS Details
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
torchvision
|
| 3 |
+
datasets
|
| 4 |
+
git+https://github.com/huggingface/transformers.git
|
| 5 |
+
accelerate
|
| 6 |
+
pillow
|
| 7 |
+
gradio
|
| 8 |
+
matplotlib
|