Spaces:
Paused
Paused
File size: 20,953 Bytes
71783c2 f9bcc24 71783c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 |
import gradio as gr
import base64
import json
import os
import shutil
import uuid
from huggingface_hub import CommitScheduler, HfApi
api = HfApi()
api.login(os.environ["HF_TOKEN"])
scheduler = CommitScheduler(
repo_id="taesiri/EdgeQuest",
repo_type="dataset",
folder_path="./data",
path_in_repo="data",
every=1,
)
def generate_json_files(
system_message,
# New fields
name,
email_address,
institution,
openreview_profile,
question_categories,
subquestion_1_text,
subquestion_1_answer,
subquestion_2_text,
subquestion_2_answer,
# Existing fields
question,
final_answer,
rationale_text,
# Question images
image1,
image2,
image3,
image4,
# Rationale images
rationale_image1,
rationale_image2,
):
"""
For each request:
1) Create a unique folder under ./data/
2) Copy uploaded images (question + rationale) into that folder
3) Produce two JSON files:
- request_urls.json (local file paths in content)
- request_base64.json (base64-encoded images in content)
4) Return paths to both files for Gradio to provide as download links
"""
# 1) Create parent data folder if it doesn't exist
parent_data_folder = "./data"
os.makedirs(parent_data_folder, exist_ok=True)
# 2) Generate a unique request ID and create a subfolder
request_id = str(uuid.uuid4()) # unique ID
request_folder = os.path.join(parent_data_folder, request_id)
os.makedirs(request_folder)
# Handle defaults
if not system_message:
system_message = "You are a helpful assistant"
# Convert None strings
def safe_str(val):
return val if val is not None else ""
name = safe_str(name)
email_address = safe_str(email_address)
institution = safe_str(institution)
openreview_profile = safe_str(openreview_profile)
# Convert question_categories to list
question_categories = (
[cat.strip() for cat in safe_str(question_categories).split(",")]
if question_categories
else []
)
subquestion_1_text = safe_str(subquestion_1_text)
subquestion_1_answer = safe_str(subquestion_1_answer)
subquestion_2_text = safe_str(subquestion_2_text)
subquestion_2_answer = safe_str(subquestion_2_answer)
question = safe_str(question)
final_answer = safe_str(final_answer)
rationale_text = safe_str(rationale_text)
# Collect image-like fields so we can process them in one loop
all_images = [
("question_image_1", image1),
("question_image_2", image2),
("question_image_3", image3),
("question_image_4", image4),
("rationale_image_1", rationale_image1),
("rationale_image_2", rationale_image2),
]
files_list = []
for idx, (img_label, img_obj) in enumerate(all_images):
if img_obj is not None:
temp_path = os.path.join(request_folder, f"{img_label}.png")
if isinstance(img_obj, str):
# If image is a file path
shutil.copy2(img_obj, temp_path)
else:
# If image is a numpy array
gr.processing_utils.save_image(img_obj, temp_path)
# Keep track of the saved path + label
files_list.append((img_label, temp_path))
# Build user content in two flavors: local file paths vs base64
# We’ll store text fields as simple dictionaries, and then images separately.
content_list_urls = [
{"type": "field", "label": "name", "value": name},
{"type": "field", "label": "email_address", "value": email_address},
{"type": "field", "label": "institution", "value": institution},
{"type": "field", "label": "openreview_profile", "value": openreview_profile},
{"type": "field", "label": "question_categories", "value": question_categories},
{"type": "field", "label": "subquestion_1_text", "value": subquestion_1_text},
{
"type": "field",
"label": "subquestion_1_answer",
"value": subquestion_1_answer,
},
{"type": "field", "label": "subquestion_2_text", "value": subquestion_2_text},
{
"type": "field",
"label": "subquestion_2_answer",
"value": subquestion_2_answer,
},
{"type": "field", "label": "question", "value": question},
{"type": "field", "label": "final_answer", "value": final_answer},
{"type": "field", "label": "rationale_text", "value": rationale_text},
]
content_list_base64 = [
{"type": "field", "label": "name", "value": name},
{"type": "field", "label": "email_address", "value": email_address},
{"type": "field", "label": "institution", "value": institution},
{"type": "field", "label": "openreview_profile", "value": openreview_profile},
{"type": "field", "label": "question_categories", "value": question_categories},
{"type": "field", "label": "subquestion_1_text", "value": subquestion_1_text},
{
"type": "field",
"label": "subquestion_1_answer",
"value": subquestion_1_answer,
},
{"type": "field", "label": "subquestion_2_text", "value": subquestion_2_text},
{
"type": "field",
"label": "subquestion_2_answer",
"value": subquestion_2_answer,
},
{"type": "field", "label": "question", "value": question},
{"type": "field", "label": "final_answer", "value": final_answer},
{"type": "field", "label": "rationale_text", "value": rationale_text},
]
# Append image references
for img_label, file_path in files_list:
# 1) Local path (URL) version
rel_path = os.path.join(".", os.path.basename(file_path))
content_list_urls.append(
{
"type": "image_url",
"label": img_label,
"image_url": {"url": {"data:image/png;path": rel_path}},
}
)
# 2) Base64 version
with open(file_path, "rb") as f:
file_bytes = f.read()
img_b64_str = base64.b64encode(file_bytes).decode("utf-8")
content_list_base64.append(
{
"type": "image_url",
"label": img_label,
"image_url": {"url": {"data:image/png;base64": img_b64_str}},
}
)
# Build the final JSON structures for each approach
i = 1
assistant_content = [
{"type": "text", "text": rationale_text},
{"type": "text", "text": final_answer},
]
# A) URLs JSON
item_urls = {
"custom_id": f"request______{i}",
# Metadata at top level
"name": name,
"email_address": email_address,
"institution": institution,
"openreview_profile": openreview_profile,
"question_categories": question_categories,
"question": {
"messages": [
{"role": "system", "content": system_message},
{
"role": "user",
"content": [
{"type": "text", "label": "question", "value": question}
]
+ [
item
for item in content_list_urls
if item.get("type") == "image_url"
and "question_image" in item.get("label", "")
],
},
],
},
"subquestions": [
{"text": subquestion_1_text, "answer": subquestion_1_answer},
{"text": subquestion_2_text, "answer": subquestion_2_answer},
],
"answer": {
"final_answer": final_answer,
"rationale_text": rationale_text,
"rationale_images": [
item
for item in content_list_urls
if item.get("type") == "image_url"
and "rationale_image" in item.get("label", "")
],
},
}
# B) Base64 JSON
item_base64 = {
"custom_id": f"request______{i}",
# Metadata at top level
"name": name,
"email_address": email_address,
"institution": institution,
"openreview_profile": openreview_profile,
# Question-related fields at top level
"question_categories": question_categories,
"subquestions": [
{"text": subquestion_1_text, "answer": subquestion_1_answer},
{"text": subquestion_2_text, "answer": subquestion_2_answer},
],
"final_answer": final_answer,
"rationale_text": rationale_text,
"body": {
"model": "MODEL_NAME",
"messages": [
{"role": "system", "content": system_message},
{
"role": "user",
"content": [
{"type": "field", "label": "question", "value": question}
]
+ [
item
for item in content_list_base64
if item.get("type") == "image_url"
and "question_image" in item.get("label", "")
],
},
{
"role": "assistant",
"content": [
{"type": "text", "text": rationale_text},
{"type": "text", "text": final_answer},
*[
item
for item in content_list_base64
if item.get("type") == "image_url"
and "rationale_image" in item.get("label", "")
],
],
},
],
},
}
# Convert each to JSON line format
urls_json_line = json.dumps(item_urls, ensure_ascii=False)
base64_json_line = json.dumps(item_base64, ensure_ascii=False)
# 3) Write out two JSON files in request_folder
urls_jsonl_path = os.path.join(request_folder, "request_urls.json")
base64_jsonl_path = os.path.join(request_folder, "request_base64.json")
with open(urls_jsonl_path, "w", encoding="utf-8") as f:
f.write(urls_json_line + "\n")
with open(base64_jsonl_path, "w", encoding="utf-8") as f:
f.write(base64_json_line + "\n")
# Return the two file paths so Gradio can offer them as downloads
return urls_jsonl_path, base64_jsonl_path
# Build the Gradio app
with gr.Blocks() as demo:
gr.Markdown("# Dataset Builder")
with gr.Accordion("Instructions", open=True):
gr.HTML(
"""
<h3>Instructions:</h3>
<p>Welcome to the Hugging Face space for collecting questions for new benchmark datasets.</p>
<table style="width:100%; border-collapse: collapse; margin: 10px 0;">
<tr>
<th style="width:50%; background-color: #3366f0; padding: 8px; text-align: left; border: 1px solid #ddd;">
Required Fields
</th>
<th style="width:50%; background-color: #3366f0; padding: 8px; text-align: left; border: 1px solid #ddd;">
Optional Fields
</th>
</tr>
<tr>
<td style="vertical-align: top; padding: 8px; border: 1px solid #ddd;">
<ul style="margin: 0;">
<li>Author Information</li>
<li>At least <b>one question image</b></li>
<li>The <b>question text</b></li>
<li>The <b>final answer</b></li>
</ul>
</td>
<td style="vertical-align: top; padding: 8px; border: 1px solid #ddd;">
<ul style="margin: 0;">
<li>Up to four question images</li>
<li>Supporting images for your answer</li>
<li><b>Rationale text</b> to explain your reasoning</li>
<li><b>Sub-questions</b> with their answers</li>
</ul>
</td>
</tr>
</table>
<p>While not all fields are mandatory, providing additional context through optional fields will help create a more comprehensive dataset. After submitting a question, you can clear up the form to submit another one.</p>
"""
)
gr.Markdown("## Author Information")
with gr.Row():
name_input = gr.Textbox(label="Name", lines=1)
email_address_input = gr.Textbox(label="Email Address", lines=1)
institution_input = gr.Textbox(
label="Institution or 'Independent'",
lines=1,
placeholder="e.g. MIT, Google, Independent, etc.",
)
openreview_profile_input = gr.Textbox(
label="OpenReview Profile Name",
lines=1,
placeholder="Your OpenReview username or profile name",
)
gr.Markdown("## Question Information")
# Question Images - Individual Tabs
with gr.Tabs():
with gr.Tab("Image 1"):
image1 = gr.Image(label="Question Image 1", type="filepath")
with gr.Tab("Image 2 (Optional)"):
image2 = gr.Image(label="Question Image 2", type="filepath")
with gr.Tab("Image 3 (Optional)"):
image3 = gr.Image(label="Question Image 3", type="filepath")
with gr.Tab("Image 4 (Optional)"):
image4 = gr.Image(label="Question Image 4", type="filepath")
question_input = gr.Textbox(
label="Question", lines=15, placeholder="Type your question here..."
)
question_categories_input = gr.Textbox(
label="Question Categories",
lines=1,
placeholder="Comma-separated tags, e.g. math, geometry",
)
# Answer Section
gr.Markdown("## Answer ")
final_answer_input = gr.Textbox(
label="Final Answer",
lines=1,
placeholder="Enter the short/concise final answer...",
)
rationale_text_input = gr.Textbox(
label="Rationale Text",
lines=5,
placeholder="Enter the reasoning or explanation for the answer...",
)
# Rationale Images - Individual Tabs
with gr.Tabs():
with gr.Tab("Rationale 1 (Optional)"):
rationale_image1 = gr.Image(label="Rationale Image 1", type="filepath")
with gr.Tab("Rationale 2 (Optional)"):
rationale_image2 = gr.Image(label="Rationale Image 2", type="filepath")
# Subquestions Section
gr.Markdown("## Subquestions")
with gr.Row():
subquestion_1_text_input = gr.Textbox(
label="Subquestion 1 Text", lines=2, placeholder="First sub-question..."
)
subquestion_1_answer_input = gr.Textbox(
label="Subquestion 1 Answer",
lines=2,
placeholder="Answer to sub-question 1...",
)
with gr.Row():
subquestion_2_text_input = gr.Textbox(
label="Subquestion 2 Text", lines=2, placeholder="Second sub-question..."
)
subquestion_2_answer_input = gr.Textbox(
label="Subquestion 2 Answer",
lines=2,
placeholder="Answer to sub-question 2...",
)
system_message_input = gr.Textbox(
label="System Message",
value="You are a helpful assistant",
lines=2,
placeholder="Enter the system message that defines the AI assistant's role and behavior...",
)
with gr.Row():
submit_button = gr.Button("Submit")
clear_button = gr.Button("Clear Form")
with gr.Row():
output_file_urls = gr.File(
label="Download URLs JSON", interactive=False, visible=False
)
output_file_base64 = gr.File(
label="Download Base64 JSON", interactive=False, visible=False
)
# On Submit, we call generate_json_files with all relevant fields
def validate_and_generate(
sys_msg,
nm,
em,
inst,
orp,
qcats,
sq1t,
sq1a,
sq2t,
sq2a,
q,
fa,
rt,
i1,
i2,
i3,
i4,
ri1,
ri2,
):
# Check all required fields
missing_fields = []
if not nm or not nm.strip():
missing_fields.append("Name")
if not em or not em.strip():
missing_fields.append("Email Address")
if not inst or not inst.strip():
missing_fields.append("Institution")
if not q or not q.strip():
missing_fields.append("Question")
if not fa or not fa.strip():
missing_fields.append("Final Answer")
if not i1:
missing_fields.append("First Question Image")
# If any required fields are missing, return a warning and keep all fields as is
if missing_fields:
warning_msg = f"Required fields missing: {', '.join(missing_fields)} ⛔️"
# Return all inputs unchanged plus the warning
gr.Warning(warning_msg, duration=5)
return gr.Button(interactive=True)
# Only after successful validation, generate files but keep all fields
results = generate_json_files(
sys_msg,
nm,
em,
inst,
orp,
qcats,
sq1t,
sq1a,
sq2t,
sq2a,
q,
fa,
rt,
i1,
i2,
i3,
i4,
ri1,
ri2,
)
gr.Info(
"Dataset item created successfully! 🎉, Clear the form to submit a new one"
)
return gr.update(interactive=False)
submit_button.click(
fn=validate_and_generate,
inputs=[
system_message_input,
name_input,
email_address_input,
institution_input,
openreview_profile_input,
question_categories_input,
subquestion_1_text_input,
subquestion_1_answer_input,
subquestion_2_text_input,
subquestion_2_answer_input,
question_input,
final_answer_input,
rationale_text_input,
image1,
image2,
image3,
image4,
rationale_image1,
rationale_image2,
],
outputs=[submit_button],
)
# Clear button functionality
def clear_form_fields(sys_msg, name, email, inst, openreview, *args):
# Preserve personal info fields
return [
"You are a helpful assistant", # Reset system message to default
name, # Preserve name
email, # Preserve email
inst, # Preserve institution
openreview, # Preserve OpenReview profile
None, # Clear question categories
None, # Clear subquestion 1 text
None, # Clear subquestion 1 answer
None, # Clear subquestion 2 text
None, # Clear subquestion 2 answer
None, # Clear question
None, # Clear final answer
None, # Clear rationale text
None, # Clear image1
None, # Clear image2
None, # Clear image3
None, # Clear image4
None, # Clear rationale image1
None, # Clear rationale image2
None, # Clear output file urls
None, # Clear output file base64
gr.update(interactive=True), # Re-enable submit button
]
clear_button.click(
fn=clear_form_fields,
inputs=[
system_message_input,
name_input,
email_address_input,
institution_input,
openreview_profile_input,
],
outputs=[
system_message_input,
name_input,
email_address_input,
institution_input,
openreview_profile_input,
question_categories_input,
subquestion_1_text_input,
subquestion_1_answer_input,
subquestion_2_text_input,
subquestion_2_answer_input,
question_input,
final_answer_input,
rationale_text_input,
image1,
image2,
image3,
image4,
rationale_image1,
rationale_image2,
output_file_urls,
output_file_base64,
submit_button,
],
)
demo.launch()
|