File size: 24,226 Bytes
44504f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
"""Methods for creating function specs in the style of OpenAI Functions"""

from __future__ import annotations

import collections
import inspect
import logging
import types
import typing
import uuid
from typing import (
    TYPE_CHECKING,
    Annotated,
    Any,
    Callable,
    Literal,
    Optional,
    Union,
    cast,
)

from pydantic import BaseModel
from typing_extensions import TypedDict, get_args, get_origin, is_typeddict

from langchain_core._api import beta, deprecated
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage, ToolMessage
from langchain_core.utils.json_schema import dereference_refs
from langchain_core.utils.pydantic import is_basemodel_subclass

if TYPE_CHECKING:
    from langchain_core.tools import BaseTool

logger = logging.getLogger(__name__)

PYTHON_TO_JSON_TYPES = {
    "str": "string",
    "int": "integer",
    "float": "number",
    "bool": "boolean",
}


class FunctionDescription(TypedDict):
    """Representation of a callable function to send to an LLM."""

    name: str
    """The name of the function."""
    description: str
    """A description of the function."""
    parameters: dict
    """The parameters of the function."""


class ToolDescription(TypedDict):
    """Representation of a callable function to the OpenAI API."""

    type: Literal["function"]
    """The type of the tool."""
    function: FunctionDescription
    """The function description."""


def _rm_titles(kv: dict, prev_key: str = "") -> dict:
    new_kv = {}
    for k, v in kv.items():
        if k == "title":
            if isinstance(v, dict) and prev_key == "properties" and "title" in v:
                new_kv[k] = _rm_titles(v, k)
            else:
                continue
        elif isinstance(v, dict):
            new_kv[k] = _rm_titles(v, k)
        else:
            new_kv[k] = v
    return new_kv


@deprecated(
    "0.1.16",
    alternative="langchain_core.utils.function_calling.convert_to_openai_function()",
    removal="1.0",
)
def convert_pydantic_to_openai_function(
    model: type,
    *,
    name: Optional[str] = None,
    description: Optional[str] = None,
    rm_titles: bool = True,
) -> FunctionDescription:
    """Converts a Pydantic model to a function description for the OpenAI API.

    Args:
        model: The Pydantic model to convert.
        name: The name of the function. If not provided, the title of the schema will be
            used.
        description: The description of the function. If not provided, the description
            of the schema will be used.
        rm_titles: Whether to remove titles from the schema. Defaults to True.

    Returns:
        The function description.
    """
    if hasattr(model, "model_json_schema"):
        schema = model.model_json_schema()  # Pydantic 2
    elif hasattr(model, "schema"):
        schema = model.schema()  # Pydantic 1
    else:
        msg = "Model must be a Pydantic model."
        raise TypeError(msg)
    schema = dereference_refs(schema)
    if "definitions" in schema:  # pydantic 1
        schema.pop("definitions", None)
    if "$defs" in schema:  # pydantic 2
        schema.pop("$defs", None)
    title = schema.pop("title", "")
    default_description = schema.pop("description", "")
    return {
        "name": name or title,
        "description": description or default_description,
        "parameters": _rm_titles(schema) if rm_titles else schema,
    }


@deprecated(
    "0.1.16",
    alternative="langchain_core.utils.function_calling.convert_to_openai_tool()",
    removal="1.0",
)
def convert_pydantic_to_openai_tool(
    model: type[BaseModel],
    *,
    name: Optional[str] = None,
    description: Optional[str] = None,
) -> ToolDescription:
    """Converts a Pydantic model to a function description for the OpenAI API.

    Args:
        model: The Pydantic model to convert.
        name: The name of the function. If not provided, the title of the schema will be
            used.
        description: The description of the function. If not provided, the description
            of the schema will be used.

    Returns:
        The tool description.
    """
    function = convert_pydantic_to_openai_function(
        model, name=name, description=description
    )
    return {"type": "function", "function": function}


def _get_python_function_name(function: Callable) -> str:
    """Get the name of a Python function."""
    return function.__name__


@deprecated(
    "0.1.16",
    alternative="langchain_core.utils.function_calling.convert_to_openai_function()",
    removal="1.0",
)
def convert_python_function_to_openai_function(
    function: Callable,
) -> FunctionDescription:
    """Convert a Python function to an OpenAI function-calling API compatible dict.

    Assumes the Python function has type hints and a docstring with a description. If
        the docstring has Google Python style argument descriptions, these will be
        included as well.

    Args:
        function: The Python function to convert.

    Returns:
        The OpenAI function description.
    """
    from langchain_core.tools.base import create_schema_from_function

    func_name = _get_python_function_name(function)
    model = create_schema_from_function(
        func_name,
        function,
        filter_args=(),
        parse_docstring=True,
        error_on_invalid_docstring=False,
        include_injected=False,
    )
    return convert_pydantic_to_openai_function(
        model,
        name=func_name,
        description=model.__doc__,
    )


def _convert_typed_dict_to_openai_function(typed_dict: type) -> FunctionDescription:
    visited: dict = {}
    from pydantic.v1 import BaseModel

    model = cast(
        type[BaseModel],
        _convert_any_typed_dicts_to_pydantic(typed_dict, visited=visited),
    )
    return convert_pydantic_to_openai_function(model)  # type: ignore


_MAX_TYPED_DICT_RECURSION = 25


def _convert_any_typed_dicts_to_pydantic(
    type_: type,
    *,
    visited: dict,
    depth: int = 0,
) -> type:
    from pydantic.v1 import Field as Field_v1
    from pydantic.v1 import create_model as create_model_v1

    if type_ in visited:
        return visited[type_]
    elif depth >= _MAX_TYPED_DICT_RECURSION:
        return type_
    elif is_typeddict(type_):
        typed_dict = type_
        docstring = inspect.getdoc(typed_dict)
        annotations_ = typed_dict.__annotations__
        description, arg_descriptions = _parse_google_docstring(
            docstring, list(annotations_)
        )
        fields: dict = {}
        for arg, arg_type in annotations_.items():
            if get_origin(arg_type) is Annotated:
                annotated_args = get_args(arg_type)
                new_arg_type = _convert_any_typed_dicts_to_pydantic(
                    annotated_args[0], depth=depth + 1, visited=visited
                )
                field_kwargs = dict(zip(("default", "description"), annotated_args[1:]))
                if (field_desc := field_kwargs.get("description")) and not isinstance(
                    field_desc, str
                ):
                    msg = (
                        f"Invalid annotation for field {arg}. Third argument to "
                        f"Annotated must be a string description, received value of "
                        f"type {type(field_desc)}."
                    )
                    raise ValueError(msg)
                elif arg_desc := arg_descriptions.get(arg):
                    field_kwargs["description"] = arg_desc
                else:
                    pass
                fields[arg] = (new_arg_type, Field_v1(**field_kwargs))
            else:
                new_arg_type = _convert_any_typed_dicts_to_pydantic(
                    arg_type, depth=depth + 1, visited=visited
                )
                field_kwargs = {"default": ...}
                if arg_desc := arg_descriptions.get(arg):
                    field_kwargs["description"] = arg_desc
                fields[arg] = (new_arg_type, Field_v1(**field_kwargs))
        model = create_model_v1(typed_dict.__name__, **fields)
        model.__doc__ = description
        visited[typed_dict] = model
        return model
    elif (origin := get_origin(type_)) and (type_args := get_args(type_)):
        subscriptable_origin = _py_38_safe_origin(origin)
        type_args = tuple(
            _convert_any_typed_dicts_to_pydantic(arg, depth=depth + 1, visited=visited)
            for arg in type_args  # type: ignore[index]
        )
        return subscriptable_origin[type_args]  # type: ignore[index]
    else:
        return type_


@deprecated(
    "0.1.16",
    alternative="langchain_core.utils.function_calling.convert_to_openai_function()",
    removal="1.0",
)
def format_tool_to_openai_function(tool: BaseTool) -> FunctionDescription:
    """Format tool into the OpenAI function API.

    Args:
        tool: The tool to format.

    Returns:
        The function description.
    """
    from langchain_core.tools import simple

    is_simple_oai_tool = isinstance(tool, simple.Tool) and not tool.args_schema
    if tool.tool_call_schema and not is_simple_oai_tool:
        return convert_pydantic_to_openai_function(
            tool.tool_call_schema, name=tool.name, description=tool.description
        )
    else:
        return {
            "name": tool.name,
            "description": tool.description,
            "parameters": {
                # This is a hack to get around the fact that some tools
                # do not expose an args_schema, and expect an argument
                # which is a string.
                # And Open AI does not support an array type for the
                # parameters.
                "properties": {
                    "__arg1": {"title": "__arg1", "type": "string"},
                },
                "required": ["__arg1"],
                "type": "object",
            },
        }


@deprecated(
    "0.1.16",
    alternative="langchain_core.utils.function_calling.convert_to_openai_tool()",
    removal="1.0",
)
def format_tool_to_openai_tool(tool: BaseTool) -> ToolDescription:
    """Format tool into the OpenAI function API.

    Args:
        tool: The tool to format.

    Returns:
        The tool description.
    """
    function = format_tool_to_openai_function(tool)
    return {"type": "function", "function": function}


def convert_to_openai_function(
    function: Union[dict[str, Any], type, Callable, BaseTool],
    *,
    strict: Optional[bool] = None,
) -> dict[str, Any]:
    """Convert a raw function/class to an OpenAI function.
    Args:
        function:
            A dictionary, Pydantic BaseModel class, TypedDict class, a LangChain
            Tool object, or a Python function. If a dictionary is passed in, it is
            assumed to already be a valid OpenAI function, a JSON schema with
            top-level 'title' key specified, an Anthropic format
            tool, or an Amazon Bedrock Converse format tool.
        strict:
            If True, model output is guaranteed to exactly match the JSON Schema
            provided in the function definition. If None, ``strict`` argument will not
            be included in function definition.

    Returns:
        A dict version of the passed in function which is compatible with the OpenAI
        function-calling API.

    Raises:
        ValueError: If function is not in a supported format.

    .. versionchanged:: 0.2.29

        ``strict`` arg added.

    .. versionchanged:: 0.3.13

        Support for Anthropic format tools added.

    .. versionchanged:: 0.3.14

        Support for Amazon Bedrock Converse format tools added.

    .. versionchanged:: 0.3.16

        'description' and 'parameters' keys are now optional. Only 'name' is
        required and guaranteed to be part of the output.
    """
    from langchain_core.tools import BaseTool

    # an Anthropic format tool
    if isinstance(function, dict) and all(
        k in function for k in ("name", "input_schema")
    ):
        oai_function = {
            "name": function["name"],
            "parameters": function["input_schema"],
        }
        if "description" in function:
            oai_function["description"] = function["description"]
    # an Amazon Bedrock Converse format tool
    elif isinstance(function, dict) and "toolSpec" in function:
        oai_function = {
            "name": function["toolSpec"]["name"],
            "parameters": function["toolSpec"]["inputSchema"]["json"],
        }
        if "description" in function["toolSpec"]:
            oai_function["description"] = function["toolSpec"]["description"]
    # already in OpenAI function format
    elif isinstance(function, dict) and "name" in function:
        oai_function = {
            k: v
            for k, v in function.items()
            if k in ("name", "description", "parameters", "strict")
        }
    # a JSON schema with title and description
    elif isinstance(function, dict) and "title" in function:
        function_copy = function.copy()
        oai_function = {"name": function_copy.pop("title")}
        if "description" in function_copy:
            oai_function["description"] = function_copy.pop("description")
        if function_copy and "properties" in function_copy:
            oai_function["parameters"] = function_copy
    elif isinstance(function, type) and is_basemodel_subclass(function):
        oai_function = cast(dict, convert_pydantic_to_openai_function(function))
    elif is_typeddict(function):
        oai_function = cast(
            dict, _convert_typed_dict_to_openai_function(cast(type, function))
        )
    elif isinstance(function, BaseTool):
        oai_function = cast(dict, format_tool_to_openai_function(function))
    elif callable(function):
        oai_function = cast(dict, convert_python_function_to_openai_function(function))
    else:
        msg = (
            f"Unsupported function\n\n{function}\n\nFunctions must be passed in"
            " as Dict, pydantic.BaseModel, or Callable. If they're a dict they must"
            " either be in OpenAI function format or valid JSON schema with top-level"
            " 'title' and 'description' keys."
        )
        raise ValueError(msg)

    if strict is not None:
        if "strict" in oai_function and oai_function["strict"] != strict:
            msg = (
                f"Tool/function already has a 'strict' key wth value "
                f"{oai_function['strict']} which is different from the explicit "
                f"`strict` arg received {strict=}."
            )
            raise ValueError(msg)
        oai_function["strict"] = strict
        if strict:
            # As of 08/06/24, OpenAI requires that additionalProperties be supplied and
            # set to False if strict is True.
            # All properties layer needs 'additionalProperties=False'
            oai_function["parameters"] = _recursive_set_additional_properties_false(
                oai_function["parameters"]
            )
    return oai_function


def convert_to_openai_tool(
    tool: Union[dict[str, Any], type[BaseModel], Callable, BaseTool],
    *,
    strict: Optional[bool] = None,
) -> dict[str, Any]:
    """Convert a tool-like object to an OpenAI tool schema.

    OpenAI tool schema reference:
    https://platform.openai.com/docs/api-reference/chat/create#chat-create-tools

    Args:
        tool:
            Either a dictionary, a pydantic.BaseModel class, Python function, or
            BaseTool. If a dictionary is passed in, it is
            assumed to already be a valid OpenAI function, a JSON schema with
            top-level 'title' key specified, an Anthropic format
            tool, or an Amazon Bedrock Converse format tool.
        strict:
            If True, model output is guaranteed to exactly match the JSON Schema
            provided in the function definition. If None, ``strict`` argument will not
            be included in tool definition.

    Returns:
        A dict version of the passed in tool which is compatible with the
        OpenAI tool-calling API.

    .. versionchanged:: 0.2.29

        ``strict`` arg added.

    .. versionchanged:: 0.3.13

        Support for Anthropic format tools added.

    .. versionchanged:: 0.3.14

        Support for Amazon Bedrock Converse format tools added.

    .. versionchanged:: 0.3.16

        'description' and 'parameters' keys are now optional. Only 'name' is
        required and guaranteed to be part of the output.
    """
    if isinstance(tool, dict) and tool.get("type") == "function" and "function" in tool:
        return tool
    oai_function = convert_to_openai_function(tool, strict=strict)
    return {"type": "function", "function": oai_function}


@beta()
def tool_example_to_messages(
    input: str,
    tool_calls: list[BaseModel],
    tool_outputs: Optional[list[str]] = None,
    *,
    ai_response: Optional[str] = None,
) -> list[BaseMessage]:
    """Convert an example into a list of messages that can be fed into an LLM.

    This code is an adapter that converts a single example to a list of messages
    that can be fed into a chat model.

    The list of messages per example by default corresponds to:

    1) HumanMessage: contains the content from which content should be extracted.
    2) AIMessage: contains the extracted information from the model
    3) ToolMessage: contains confirmation to the model that the model requested a tool
        correctly.

    If `ai_response` is specified, there will be a final AIMessage with that response.

    The ToolMessage is required because some chat models are hyper-optimized for agents
    rather than for an extraction use case.

    Arguments:
        input: string, the user input
        tool_calls: List[BaseModel], a list of tool calls represented as Pydantic
            BaseModels
        tool_outputs: Optional[List[str]], a list of tool call outputs.
            Does not need to be provided. If not provided, a placeholder value
            will be inserted. Defaults to None.
        ai_response: Optional[str], if provided, content for a final AIMessage.

    Returns:
        A list of messages

    Examples:

        .. code-block:: python

            from typing import List, Optional
            from pydantic import BaseModel, Field
            from langchain_openai import ChatOpenAI

            class Person(BaseModel):
                '''Information about a person.'''
                name: Optional[str] = Field(..., description="The name of the person")
                hair_color: Optional[str] = Field(
                    ..., description="The color of the person's hair if known"
                )
                height_in_meters: Optional[str] = Field(
                    ..., description="Height in METERs"
                )

            examples = [
                (
                    "The ocean is vast and blue. It's more than 20,000 feet deep.",
                    Person(name=None, height_in_meters=None, hair_color=None),
                ),
                (
                    "Fiona traveled far from France to Spain.",
                    Person(name="Fiona", height_in_meters=None, hair_color=None),
                ),
            ]


            messages = []

            for txt, tool_call in examples:
                messages.extend(
                    tool_example_to_messages(txt, [tool_call])
                )
    """
    messages: list[BaseMessage] = [HumanMessage(content=input)]
    openai_tool_calls = []
    for tool_call in tool_calls:
        openai_tool_calls.append(
            {
                "id": str(uuid.uuid4()),
                "type": "function",
                "function": {
                    # The name of the function right now corresponds to the name
                    # of the pydantic model. This is implicit in the API right now,
                    # and will be improved over time.
                    "name": tool_call.__class__.__name__,
                    "arguments": tool_call.model_dump_json(),
                },
            }
        )
    messages.append(
        AIMessage(content="", additional_kwargs={"tool_calls": openai_tool_calls})
    )
    tool_outputs = tool_outputs or ["You have correctly called this tool."] * len(
        openai_tool_calls
    )
    for output, tool_call_dict in zip(tool_outputs, openai_tool_calls):
        messages.append(ToolMessage(content=output, tool_call_id=tool_call_dict["id"]))  # type: ignore

    if ai_response:
        messages.append(AIMessage(content=ai_response))
    return messages


def _parse_google_docstring(
    docstring: Optional[str],
    args: list[str],
    *,
    error_on_invalid_docstring: bool = False,
) -> tuple[str, dict]:
    """Parse the function and argument descriptions from the docstring of a function.

    Assumes the function docstring follows Google Python style guide.
    """
    if docstring:
        docstring_blocks = docstring.split("\n\n")
        if error_on_invalid_docstring:
            filtered_annotations = {
                arg for arg in args if arg not in ("run_manager", "callbacks", "return")
            }
            if filtered_annotations and (
                len(docstring_blocks) < 2
                or not any(block.startswith("Args:") for block in docstring_blocks[1:])
            ):
                msg = "Found invalid Google-Style docstring."
                raise ValueError(msg)
        descriptors = []
        args_block = None
        past_descriptors = False
        for block in docstring_blocks:
            if block.startswith("Args:"):
                args_block = block
                break
            elif block.startswith(("Returns:", "Example:")):
                # Don't break in case Args come after
                past_descriptors = True
            elif not past_descriptors:
                descriptors.append(block)
            else:
                continue
        description = " ".join(descriptors)
    else:
        if error_on_invalid_docstring:
            msg = "Found invalid Google-Style docstring."
            raise ValueError(msg)
        description = ""
        args_block = None
    arg_descriptions = {}
    if args_block:
        arg = None
        for line in args_block.split("\n")[1:]:
            if ":" in line:
                arg, desc = line.split(":", maxsplit=1)
                arg = arg.strip()
                arg_name, _, _annotations = arg.partition(" ")
                if _annotations.startswith("(") and _annotations.endswith(")"):
                    arg = arg_name
                arg_descriptions[arg] = desc.strip()
            elif arg:
                arg_descriptions[arg] += " " + line.strip()
    return description, arg_descriptions


def _py_38_safe_origin(origin: type) -> type:
    origin_union_type_map: dict[type, Any] = (
        {types.UnionType: Union} if hasattr(types, "UnionType") else {}
    )

    origin_map: dict[type, Any] = {
        dict: dict,
        list: list,
        tuple: tuple,
        set: set,
        collections.abc.Iterable: typing.Iterable,
        collections.abc.Mapping: typing.Mapping,
        collections.abc.Sequence: typing.Sequence,
        collections.abc.MutableMapping: typing.MutableMapping,
        **origin_union_type_map,
    }
    return cast(type, origin_map.get(origin, origin))


def _recursive_set_additional_properties_false(
    schema: dict[str, Any],
) -> dict[str, Any]:
    if isinstance(schema, dict):
        # Check if 'required' is a key at the current level or if the schema is empty,
        # in which case additionalProperties still needs to be specified.
        if "required" in schema or (
            "properties" in schema and not schema["properties"]
        ):
            schema["additionalProperties"] = False

        # Recursively check 'properties' and 'items' if they exist
        if "properties" in schema:
            for value in schema["properties"].values():
                _recursive_set_additional_properties_false(value)
        if "items" in schema:
            _recursive_set_additional_properties_false(schema["items"])

    return schema