Spaces:
Runtime error
Runtime error
File size: 24,226 Bytes
44504f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 |
"""Methods for creating function specs in the style of OpenAI Functions"""
from __future__ import annotations
import collections
import inspect
import logging
import types
import typing
import uuid
from typing import (
TYPE_CHECKING,
Annotated,
Any,
Callable,
Literal,
Optional,
Union,
cast,
)
from pydantic import BaseModel
from typing_extensions import TypedDict, get_args, get_origin, is_typeddict
from langchain_core._api import beta, deprecated
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage, ToolMessage
from langchain_core.utils.json_schema import dereference_refs
from langchain_core.utils.pydantic import is_basemodel_subclass
if TYPE_CHECKING:
from langchain_core.tools import BaseTool
logger = logging.getLogger(__name__)
PYTHON_TO_JSON_TYPES = {
"str": "string",
"int": "integer",
"float": "number",
"bool": "boolean",
}
class FunctionDescription(TypedDict):
"""Representation of a callable function to send to an LLM."""
name: str
"""The name of the function."""
description: str
"""A description of the function."""
parameters: dict
"""The parameters of the function."""
class ToolDescription(TypedDict):
"""Representation of a callable function to the OpenAI API."""
type: Literal["function"]
"""The type of the tool."""
function: FunctionDescription
"""The function description."""
def _rm_titles(kv: dict, prev_key: str = "") -> dict:
new_kv = {}
for k, v in kv.items():
if k == "title":
if isinstance(v, dict) and prev_key == "properties" and "title" in v:
new_kv[k] = _rm_titles(v, k)
else:
continue
elif isinstance(v, dict):
new_kv[k] = _rm_titles(v, k)
else:
new_kv[k] = v
return new_kv
@deprecated(
"0.1.16",
alternative="langchain_core.utils.function_calling.convert_to_openai_function()",
removal="1.0",
)
def convert_pydantic_to_openai_function(
model: type,
*,
name: Optional[str] = None,
description: Optional[str] = None,
rm_titles: bool = True,
) -> FunctionDescription:
"""Converts a Pydantic model to a function description for the OpenAI API.
Args:
model: The Pydantic model to convert.
name: The name of the function. If not provided, the title of the schema will be
used.
description: The description of the function. If not provided, the description
of the schema will be used.
rm_titles: Whether to remove titles from the schema. Defaults to True.
Returns:
The function description.
"""
if hasattr(model, "model_json_schema"):
schema = model.model_json_schema() # Pydantic 2
elif hasattr(model, "schema"):
schema = model.schema() # Pydantic 1
else:
msg = "Model must be a Pydantic model."
raise TypeError(msg)
schema = dereference_refs(schema)
if "definitions" in schema: # pydantic 1
schema.pop("definitions", None)
if "$defs" in schema: # pydantic 2
schema.pop("$defs", None)
title = schema.pop("title", "")
default_description = schema.pop("description", "")
return {
"name": name or title,
"description": description or default_description,
"parameters": _rm_titles(schema) if rm_titles else schema,
}
@deprecated(
"0.1.16",
alternative="langchain_core.utils.function_calling.convert_to_openai_tool()",
removal="1.0",
)
def convert_pydantic_to_openai_tool(
model: type[BaseModel],
*,
name: Optional[str] = None,
description: Optional[str] = None,
) -> ToolDescription:
"""Converts a Pydantic model to a function description for the OpenAI API.
Args:
model: The Pydantic model to convert.
name: The name of the function. If not provided, the title of the schema will be
used.
description: The description of the function. If not provided, the description
of the schema will be used.
Returns:
The tool description.
"""
function = convert_pydantic_to_openai_function(
model, name=name, description=description
)
return {"type": "function", "function": function}
def _get_python_function_name(function: Callable) -> str:
"""Get the name of a Python function."""
return function.__name__
@deprecated(
"0.1.16",
alternative="langchain_core.utils.function_calling.convert_to_openai_function()",
removal="1.0",
)
def convert_python_function_to_openai_function(
function: Callable,
) -> FunctionDescription:
"""Convert a Python function to an OpenAI function-calling API compatible dict.
Assumes the Python function has type hints and a docstring with a description. If
the docstring has Google Python style argument descriptions, these will be
included as well.
Args:
function: The Python function to convert.
Returns:
The OpenAI function description.
"""
from langchain_core.tools.base import create_schema_from_function
func_name = _get_python_function_name(function)
model = create_schema_from_function(
func_name,
function,
filter_args=(),
parse_docstring=True,
error_on_invalid_docstring=False,
include_injected=False,
)
return convert_pydantic_to_openai_function(
model,
name=func_name,
description=model.__doc__,
)
def _convert_typed_dict_to_openai_function(typed_dict: type) -> FunctionDescription:
visited: dict = {}
from pydantic.v1 import BaseModel
model = cast(
type[BaseModel],
_convert_any_typed_dicts_to_pydantic(typed_dict, visited=visited),
)
return convert_pydantic_to_openai_function(model) # type: ignore
_MAX_TYPED_DICT_RECURSION = 25
def _convert_any_typed_dicts_to_pydantic(
type_: type,
*,
visited: dict,
depth: int = 0,
) -> type:
from pydantic.v1 import Field as Field_v1
from pydantic.v1 import create_model as create_model_v1
if type_ in visited:
return visited[type_]
elif depth >= _MAX_TYPED_DICT_RECURSION:
return type_
elif is_typeddict(type_):
typed_dict = type_
docstring = inspect.getdoc(typed_dict)
annotations_ = typed_dict.__annotations__
description, arg_descriptions = _parse_google_docstring(
docstring, list(annotations_)
)
fields: dict = {}
for arg, arg_type in annotations_.items():
if get_origin(arg_type) is Annotated:
annotated_args = get_args(arg_type)
new_arg_type = _convert_any_typed_dicts_to_pydantic(
annotated_args[0], depth=depth + 1, visited=visited
)
field_kwargs = dict(zip(("default", "description"), annotated_args[1:]))
if (field_desc := field_kwargs.get("description")) and not isinstance(
field_desc, str
):
msg = (
f"Invalid annotation for field {arg}. Third argument to "
f"Annotated must be a string description, received value of "
f"type {type(field_desc)}."
)
raise ValueError(msg)
elif arg_desc := arg_descriptions.get(arg):
field_kwargs["description"] = arg_desc
else:
pass
fields[arg] = (new_arg_type, Field_v1(**field_kwargs))
else:
new_arg_type = _convert_any_typed_dicts_to_pydantic(
arg_type, depth=depth + 1, visited=visited
)
field_kwargs = {"default": ...}
if arg_desc := arg_descriptions.get(arg):
field_kwargs["description"] = arg_desc
fields[arg] = (new_arg_type, Field_v1(**field_kwargs))
model = create_model_v1(typed_dict.__name__, **fields)
model.__doc__ = description
visited[typed_dict] = model
return model
elif (origin := get_origin(type_)) and (type_args := get_args(type_)):
subscriptable_origin = _py_38_safe_origin(origin)
type_args = tuple(
_convert_any_typed_dicts_to_pydantic(arg, depth=depth + 1, visited=visited)
for arg in type_args # type: ignore[index]
)
return subscriptable_origin[type_args] # type: ignore[index]
else:
return type_
@deprecated(
"0.1.16",
alternative="langchain_core.utils.function_calling.convert_to_openai_function()",
removal="1.0",
)
def format_tool_to_openai_function(tool: BaseTool) -> FunctionDescription:
"""Format tool into the OpenAI function API.
Args:
tool: The tool to format.
Returns:
The function description.
"""
from langchain_core.tools import simple
is_simple_oai_tool = isinstance(tool, simple.Tool) and not tool.args_schema
if tool.tool_call_schema and not is_simple_oai_tool:
return convert_pydantic_to_openai_function(
tool.tool_call_schema, name=tool.name, description=tool.description
)
else:
return {
"name": tool.name,
"description": tool.description,
"parameters": {
# This is a hack to get around the fact that some tools
# do not expose an args_schema, and expect an argument
# which is a string.
# And Open AI does not support an array type for the
# parameters.
"properties": {
"__arg1": {"title": "__arg1", "type": "string"},
},
"required": ["__arg1"],
"type": "object",
},
}
@deprecated(
"0.1.16",
alternative="langchain_core.utils.function_calling.convert_to_openai_tool()",
removal="1.0",
)
def format_tool_to_openai_tool(tool: BaseTool) -> ToolDescription:
"""Format tool into the OpenAI function API.
Args:
tool: The tool to format.
Returns:
The tool description.
"""
function = format_tool_to_openai_function(tool)
return {"type": "function", "function": function}
def convert_to_openai_function(
function: Union[dict[str, Any], type, Callable, BaseTool],
*,
strict: Optional[bool] = None,
) -> dict[str, Any]:
"""Convert a raw function/class to an OpenAI function.
Args:
function:
A dictionary, Pydantic BaseModel class, TypedDict class, a LangChain
Tool object, or a Python function. If a dictionary is passed in, it is
assumed to already be a valid OpenAI function, a JSON schema with
top-level 'title' key specified, an Anthropic format
tool, or an Amazon Bedrock Converse format tool.
strict:
If True, model output is guaranteed to exactly match the JSON Schema
provided in the function definition. If None, ``strict`` argument will not
be included in function definition.
Returns:
A dict version of the passed in function which is compatible with the OpenAI
function-calling API.
Raises:
ValueError: If function is not in a supported format.
.. versionchanged:: 0.2.29
``strict`` arg added.
.. versionchanged:: 0.3.13
Support for Anthropic format tools added.
.. versionchanged:: 0.3.14
Support for Amazon Bedrock Converse format tools added.
.. versionchanged:: 0.3.16
'description' and 'parameters' keys are now optional. Only 'name' is
required and guaranteed to be part of the output.
"""
from langchain_core.tools import BaseTool
# an Anthropic format tool
if isinstance(function, dict) and all(
k in function for k in ("name", "input_schema")
):
oai_function = {
"name": function["name"],
"parameters": function["input_schema"],
}
if "description" in function:
oai_function["description"] = function["description"]
# an Amazon Bedrock Converse format tool
elif isinstance(function, dict) and "toolSpec" in function:
oai_function = {
"name": function["toolSpec"]["name"],
"parameters": function["toolSpec"]["inputSchema"]["json"],
}
if "description" in function["toolSpec"]:
oai_function["description"] = function["toolSpec"]["description"]
# already in OpenAI function format
elif isinstance(function, dict) and "name" in function:
oai_function = {
k: v
for k, v in function.items()
if k in ("name", "description", "parameters", "strict")
}
# a JSON schema with title and description
elif isinstance(function, dict) and "title" in function:
function_copy = function.copy()
oai_function = {"name": function_copy.pop("title")}
if "description" in function_copy:
oai_function["description"] = function_copy.pop("description")
if function_copy and "properties" in function_copy:
oai_function["parameters"] = function_copy
elif isinstance(function, type) and is_basemodel_subclass(function):
oai_function = cast(dict, convert_pydantic_to_openai_function(function))
elif is_typeddict(function):
oai_function = cast(
dict, _convert_typed_dict_to_openai_function(cast(type, function))
)
elif isinstance(function, BaseTool):
oai_function = cast(dict, format_tool_to_openai_function(function))
elif callable(function):
oai_function = cast(dict, convert_python_function_to_openai_function(function))
else:
msg = (
f"Unsupported function\n\n{function}\n\nFunctions must be passed in"
" as Dict, pydantic.BaseModel, or Callable. If they're a dict they must"
" either be in OpenAI function format or valid JSON schema with top-level"
" 'title' and 'description' keys."
)
raise ValueError(msg)
if strict is not None:
if "strict" in oai_function and oai_function["strict"] != strict:
msg = (
f"Tool/function already has a 'strict' key wth value "
f"{oai_function['strict']} which is different from the explicit "
f"`strict` arg received {strict=}."
)
raise ValueError(msg)
oai_function["strict"] = strict
if strict:
# As of 08/06/24, OpenAI requires that additionalProperties be supplied and
# set to False if strict is True.
# All properties layer needs 'additionalProperties=False'
oai_function["parameters"] = _recursive_set_additional_properties_false(
oai_function["parameters"]
)
return oai_function
def convert_to_openai_tool(
tool: Union[dict[str, Any], type[BaseModel], Callable, BaseTool],
*,
strict: Optional[bool] = None,
) -> dict[str, Any]:
"""Convert a tool-like object to an OpenAI tool schema.
OpenAI tool schema reference:
https://platform.openai.com/docs/api-reference/chat/create#chat-create-tools
Args:
tool:
Either a dictionary, a pydantic.BaseModel class, Python function, or
BaseTool. If a dictionary is passed in, it is
assumed to already be a valid OpenAI function, a JSON schema with
top-level 'title' key specified, an Anthropic format
tool, or an Amazon Bedrock Converse format tool.
strict:
If True, model output is guaranteed to exactly match the JSON Schema
provided in the function definition. If None, ``strict`` argument will not
be included in tool definition.
Returns:
A dict version of the passed in tool which is compatible with the
OpenAI tool-calling API.
.. versionchanged:: 0.2.29
``strict`` arg added.
.. versionchanged:: 0.3.13
Support for Anthropic format tools added.
.. versionchanged:: 0.3.14
Support for Amazon Bedrock Converse format tools added.
.. versionchanged:: 0.3.16
'description' and 'parameters' keys are now optional. Only 'name' is
required and guaranteed to be part of the output.
"""
if isinstance(tool, dict) and tool.get("type") == "function" and "function" in tool:
return tool
oai_function = convert_to_openai_function(tool, strict=strict)
return {"type": "function", "function": oai_function}
@beta()
def tool_example_to_messages(
input: str,
tool_calls: list[BaseModel],
tool_outputs: Optional[list[str]] = None,
*,
ai_response: Optional[str] = None,
) -> list[BaseMessage]:
"""Convert an example into a list of messages that can be fed into an LLM.
This code is an adapter that converts a single example to a list of messages
that can be fed into a chat model.
The list of messages per example by default corresponds to:
1) HumanMessage: contains the content from which content should be extracted.
2) AIMessage: contains the extracted information from the model
3) ToolMessage: contains confirmation to the model that the model requested a tool
correctly.
If `ai_response` is specified, there will be a final AIMessage with that response.
The ToolMessage is required because some chat models are hyper-optimized for agents
rather than for an extraction use case.
Arguments:
input: string, the user input
tool_calls: List[BaseModel], a list of tool calls represented as Pydantic
BaseModels
tool_outputs: Optional[List[str]], a list of tool call outputs.
Does not need to be provided. If not provided, a placeholder value
will be inserted. Defaults to None.
ai_response: Optional[str], if provided, content for a final AIMessage.
Returns:
A list of messages
Examples:
.. code-block:: python
from typing import List, Optional
from pydantic import BaseModel, Field
from langchain_openai import ChatOpenAI
class Person(BaseModel):
'''Information about a person.'''
name: Optional[str] = Field(..., description="The name of the person")
hair_color: Optional[str] = Field(
..., description="The color of the person's hair if known"
)
height_in_meters: Optional[str] = Field(
..., description="Height in METERs"
)
examples = [
(
"The ocean is vast and blue. It's more than 20,000 feet deep.",
Person(name=None, height_in_meters=None, hair_color=None),
),
(
"Fiona traveled far from France to Spain.",
Person(name="Fiona", height_in_meters=None, hair_color=None),
),
]
messages = []
for txt, tool_call in examples:
messages.extend(
tool_example_to_messages(txt, [tool_call])
)
"""
messages: list[BaseMessage] = [HumanMessage(content=input)]
openai_tool_calls = []
for tool_call in tool_calls:
openai_tool_calls.append(
{
"id": str(uuid.uuid4()),
"type": "function",
"function": {
# The name of the function right now corresponds to the name
# of the pydantic model. This is implicit in the API right now,
# and will be improved over time.
"name": tool_call.__class__.__name__,
"arguments": tool_call.model_dump_json(),
},
}
)
messages.append(
AIMessage(content="", additional_kwargs={"tool_calls": openai_tool_calls})
)
tool_outputs = tool_outputs or ["You have correctly called this tool."] * len(
openai_tool_calls
)
for output, tool_call_dict in zip(tool_outputs, openai_tool_calls):
messages.append(ToolMessage(content=output, tool_call_id=tool_call_dict["id"])) # type: ignore
if ai_response:
messages.append(AIMessage(content=ai_response))
return messages
def _parse_google_docstring(
docstring: Optional[str],
args: list[str],
*,
error_on_invalid_docstring: bool = False,
) -> tuple[str, dict]:
"""Parse the function and argument descriptions from the docstring of a function.
Assumes the function docstring follows Google Python style guide.
"""
if docstring:
docstring_blocks = docstring.split("\n\n")
if error_on_invalid_docstring:
filtered_annotations = {
arg for arg in args if arg not in ("run_manager", "callbacks", "return")
}
if filtered_annotations and (
len(docstring_blocks) < 2
or not any(block.startswith("Args:") for block in docstring_blocks[1:])
):
msg = "Found invalid Google-Style docstring."
raise ValueError(msg)
descriptors = []
args_block = None
past_descriptors = False
for block in docstring_blocks:
if block.startswith("Args:"):
args_block = block
break
elif block.startswith(("Returns:", "Example:")):
# Don't break in case Args come after
past_descriptors = True
elif not past_descriptors:
descriptors.append(block)
else:
continue
description = " ".join(descriptors)
else:
if error_on_invalid_docstring:
msg = "Found invalid Google-Style docstring."
raise ValueError(msg)
description = ""
args_block = None
arg_descriptions = {}
if args_block:
arg = None
for line in args_block.split("\n")[1:]:
if ":" in line:
arg, desc = line.split(":", maxsplit=1)
arg = arg.strip()
arg_name, _, _annotations = arg.partition(" ")
if _annotations.startswith("(") and _annotations.endswith(")"):
arg = arg_name
arg_descriptions[arg] = desc.strip()
elif arg:
arg_descriptions[arg] += " " + line.strip()
return description, arg_descriptions
def _py_38_safe_origin(origin: type) -> type:
origin_union_type_map: dict[type, Any] = (
{types.UnionType: Union} if hasattr(types, "UnionType") else {}
)
origin_map: dict[type, Any] = {
dict: dict,
list: list,
tuple: tuple,
set: set,
collections.abc.Iterable: typing.Iterable,
collections.abc.Mapping: typing.Mapping,
collections.abc.Sequence: typing.Sequence,
collections.abc.MutableMapping: typing.MutableMapping,
**origin_union_type_map,
}
return cast(type, origin_map.get(origin, origin))
def _recursive_set_additional_properties_false(
schema: dict[str, Any],
) -> dict[str, Any]:
if isinstance(schema, dict):
# Check if 'required' is a key at the current level or if the schema is empty,
# in which case additionalProperties still needs to be specified.
if "required" in schema or (
"properties" in schema and not schema["properties"]
):
schema["additionalProperties"] = False
# Recursively check 'properties' and 'items' if they exist
if "properties" in schema:
for value in schema["properties"].values():
_recursive_set_additional_properties_false(value)
if "items" in schema:
_recursive_set_additional_properties_false(schema["items"])
return schema
|