Spaces:
Runtime error
Runtime error
File size: 17,997 Bytes
44504f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 |
################# This Python code is designed by Yancheng Yuan at National University of Singapore to solve ##
################# min 0.5*<X-Sigma, X-Sigma>
################# s.t. X_ii =b_i, i=1,2,...,n
################# X>=tau*I (symmetric and positive semi-definite) ########
#################
################# based on the algorithm in #################
################# ``A Quadratically Convergent Newton Method fo r#################
################# Computing the Nearest Correlation Matrix #################
################# By Houduo Qi and Defeng Sun #################
################# SIAM J. Matrix Anal. Appl. 28 (2006) 360--385.
#################
################# Last modified date: March 19, 2016 #################
################# #################
################# The input arguments Sigma, b>0, tau>=0, and tol (tolerance error) #################
################# #################
################# #################
################# For the correlation matrix problem, set b = np.ones((n,1)) #################
################# #################
################# For a positive definite matrix #################
################# set tau = 1.0e-5 for example #################
################# set tol = 1.0e-6 or lower if no very high accuracy required #################
################# If the algorithm terminates with the given tol, then it means ##################
################# the relative gap between the objective function value of the obtained solution ###
################# and the objective function value of the global solution is no more than tol or ###
################# the violation of the feasibility is smaller than tol*(1+np.linalg.norm(b)) ############
#################
################# The outputs include the optimal primal solution, the dual solution and others ########
################# Diagonal Preconditioner is used #################
#################
################# Send your comments to [email protected] or [email protected] #################
#################
################# Warning: Though the code works extremely well, it is your call to use it or not. #################
import numpy as np
import scipy.io as sio
import scipy
import sys
import time
# Generate F(y) Compute the gradient
def my_gradient(y_input, lamb, p_input, b_0, n):
f = 0.0
Fy = np.zeros((n, 1))
p_input_copy = (p_input.copy()).transpose()
for i in range(0, n):
p_input_copy[i, :] = ((np.maximum(lamb[i], 0).astype(float)) ** 0.5) * p_input_copy[i, :]
for i in range(0, n):
Fy[i] = np.sum(p_input_copy[:, i] * p_input_copy[:, i])
for i in range(0, n):
f = f + np.square((np.maximum(lamb[i], 0)))
f = 0.5 * f - np.dot(b_0.transpose(), y_input)
return f, Fy
# use PCA to generate a primal feasible solution checked
def my_pca(x_input, lamb, p_input, b_0, n):
x_pca = x_input
lamb = np.asarray(lamb)
lp = lamb > 0
r = lamb[lp].size
if r == 0:
x_pca = np.zeros((n, n))
elif r == n:
x_pca = x_input
elif r < (n / 2.0):
lamb1 = lamb[lp].copy()
lamb1 = lamb1.transpose()
lamb1 = np.sqrt(lamb1.astype(float))
P1 = p_input[:, 0:r].copy()
if r > 1:
P1 = np.dot(P1, np.diagflat(lamb1))
x_pca = np.dot(P1, P1.transpose())
else:
x_pca = np.dot(np.dot(np.square(lamb1), P1), P1.transpose())
else:
lamb2 = -lamb[r:n].copy()
lamb2 = np.sqrt(lamb2.astype(float))
p_2 = p_input[:, r:n]
p_2 = np.dot(p_2, np.diagflat(lamb2))
x_pca = x_pca + np.dot(p_2, p_2.transpose())
# To make x_pca positive semidefinite with diagonal elements exactly b0
d = x_pca.diagonal()
d = d.reshape((d.size, 1))
d = np.maximum(d, b_0.reshape(d.shape))
x_pca = x_pca - np.diagflat(x_pca.diagonal()) + np.diagflat(d)
d = d.astype(float) ** (-0.5)
d = d * ((np.sqrt(b_0.astype(float))).reshape(d.shape))
x_pca = x_pca * (np.dot(d, d.reshape(1, d.size)))
return x_pca
# end of PCA
# To generate the first order difference of lambda
# To generate the first order essential part of d
def my_omega_mat(p_input, lamb, n):
idx_idp = np.where(lamb > 0)
idx_idp = idx_idp[0]
idx_idm = np.setdiff1d(range(0, n), idx_idp)
n = lamb.size
r = idx_idp.size
if r > 0:
if r == n:
omega_12 = np.ones((n, n))
else:
s = n - r
dp = lamb[0:r].copy()
dp = dp.reshape(dp.size, 1)
dn = lamb[r:n].copy()
dn = dn.reshape((dn.size, 1))
omega_12 = np.dot(dp, np.ones((1, s)))
omega_12 = omega_12 / (np.dot(np.abs(dp), np.ones((1, s))) + np.dot(np.ones((r, 1)), abs(dn.transpose())))
omega_12 = omega_12.reshape((r, s))
else:
omega_12 = np.array([])
return omega_12
# End of my_omega_mat
# To generate Jacobian
def my_jacobian_matrix(x, omega_12, p_input, n):
x_result = np.zeros((n, 1))
[r, s] = omega_12.shape
if r > 0:
hmat_1 = p_input[:, 0:r].copy()
if r < n / 2.0:
i = 0
while i < n:
hmat_1[i, :] = x[i] * hmat_1[i, :]
i = i + 1
omega_12 = omega_12 * (np.dot(hmat_1.transpose(), p_input[:, r:n]))
hmat = np.dot(hmat_1.transpose(), np.dot(p_input[:, 0:r], p_input[:, 0:r].transpose()))
hmat = hmat + np.dot(omega_12, p_input[:, r:n].transpose())
hmat = np.vstack((hmat, np.dot(omega_12.transpose(), p_input[:, 0:r].transpose())))
i = 0
while i < n:
x_result[i] = np.dot(p_input[i, :], hmat[:, i])
x_result[i] = x_result[i] + 1.0e-10 * x[i]
i = i + 1
else:
if r == n:
x_result = 1.0e-10 * x
else:
hmat_2 = p_input[:, r:n].copy()
i = 0
while i < n:
hmat_2[i, :] = x[i] * hmat_2[i, :]
i = i + 1
omega_12 = np.ones((r, s)) - omega_12
omega_12 = omega_12 * (np.dot(p_input[:, 0:r].transpose(), hmat_2))
hmat = np.dot(p_input[:, r:n].transpose(), hmat_2)
hmat = np.dot(hmat, p_input[:, r:n].transpose())
hmat = hmat + np.dot(omega_12.transpose(), p_input[:, 0:r].transpose())
hmat = np.vstack((np.dot(omega_12, p_input[:, r:n].transpose()), hmat))
i = 0
while i < n:
x_result[i] = np.dot(-p_input[i, :], hmat[:, i])
x_result[i] = x[i] + x_result[i] + 1.0e-10 * x[i]
i = i + 1
return x_result
# end of Jacobian
# PCG Method
def my_pre_cg(b, tol, maxit, c, omega_12, p_input, n):
# Initializations
r = b.copy()
r = r.reshape(r.size, 1)
c = c.reshape(c.size, 1)
n2b = np.linalg.norm(b)
tolb = tol * n2b
p = np.zeros((n, 1))
flag = 1
iterk = 0
relres = 1000
# Precondition
z = r / c
rz_1 = np.dot(r.transpose(), z)
rz_2 = 1
d = z.copy()
# d = d.reshape(z.shape)
# CG Iteration
for k in range(0, maxit):
if k > 0:
beta = rz_1 / rz_2
d = z + beta * d
w = my_jacobian_matrix(d, omega_12, p_input, n)
denom = np.dot(d.transpose(), w)
iterk = k + 1
relres = np.linalg.norm(r) / n2b
if denom <= 0:
ss = 0 # don't know the usage, check the paper
p = d / np.linalg.norm(d)
break
else:
alpha = rz_1 / denom
p = p + alpha * d
r = r - alpha * w
z = r / c
if np.linalg.norm(r) <= tolb: # exit if hmat p = b solved in relative error tolerance
iterk = k + 1
relres = np.linalg.norm(r) / n2b
flag = 0
break
rz_2 = rz_1
rz_1 = np.dot(r.transpose(), z)
return p, flag, relres, iterk
# end of pre_cg
# to generate the diagonal preconditioner
def my_precond_matrix(omega_12, p_input, n):
[r, s] = omega_12.shape
c = np.ones((n, 1))
if r > 0:
if r < n / 2.0:
hmat = (p_input.copy()).transpose()
hmat = hmat * hmat
hmat_12 = np.dot(hmat[0:r, :].transpose(), omega_12)
d = np.ones((r, 1))
for i in range(0, n):
c_temp = np.dot(d.transpose(), hmat[0:r, i])
c_temp = c_temp * hmat[0:r, i]
c[i] = np.sum(c_temp)
c[i] = c[i] + 2.0 * np.dot(hmat_12[i, :], hmat[r:n, i])
if c[i] < 1.0e-8:
c[i] = 1.0e-8
else:
if r < n:
hmat = (p_input.copy()).transpose()
hmat = hmat * hmat
omega_12 = np.ones((r, s)) - omega_12
hmat_12 = np.dot(omega_12, hmat[r:n, :])
d = np.ones((s, 1))
dd = np.ones((n, 1))
for i in range(0, n):
c_temp = np.dot(d.transpose(), hmat[r:n, i])
c[i] = np.sum(c_temp * hmat[r:n, i])
c[i] = c[i] + 2.0 * np.dot(hmat[0:r, i].transpose(), hmat_12[:, i])
alpha = np.sum(hmat[:, i])
c[i] = alpha * np.dot(hmat[:, i].transpose(), dd) - c[i]
if c[i] < 1.0e-8:
c[i] = 1.0e-8
return c
# end of precond_matrix
# my_issorted()
def my_issorted(x_input, flag):
n = x_input.size
tf_value = False
if n < 2:
tf_value = True
else:
if flag == 1:
i = 0
while i < n - 1:
if x_input[i] <= x_input[i + 1]:
i = i + 1
else:
break
if i == n - 1:
tf_value = True
elif i < n - 1:
tf_value = False
elif flag == -1:
i = n - 1
while i > 0:
if x_input[i] <= x_input[i - 1]:
i = i - 1
else:
break
if i == 0:
tf_value = True
elif i > 0:
tf_value = False
return tf_value
# end of my_issorted()
def my_mexeig(x_input):
[n, m] = x_input.shape
[lamb, p_x] = np.linalg.eigh(x_input)
# lamb = lamb.reshape((lamb.size, 1))
p_x = p_x.real
lamb = lamb.real
if my_issorted(lamb, 1):
lamb = lamb[::-1]
p_x = np.fliplr(p_x)
elif my_issorted(lamb, -1):
return p_x, lamb
else:
idx = np.argsort(-lamb)
# lamb_old = lamb # add for debug
lamb = lamb[idx]
# p_x_old = p_x add for debug
p_x = p_x[:, idx]
lamb = lamb.reshape((n, 1))
p_x = p_x.reshape((n, n))
return p_x, lamb
# end of my_mymexeig()
# begin of the main function
def my_correlationmatrix(g_input, b_input=None, tau=None, tol=None):
print('-- Semismooth Newton-CG method starts -- \n')
[n, m] = g_input.shape
g_input = g_input.copy()
t0 = time.time() # time start
g_input = (g_input + g_input.transpose()) / 2.0
b_g = np.ones((n, 1))
error_tol = 1.0e-6
if b_input is None:
tau = 0
elif tau is None:
b_g = b_input.copy()
tau = 0
elif tol is None:
b_g = b_input.copy() - tau * np.ones((n, 1))
g_input = g_input - tau * np.eye(n, n)
else:
b_g = b_input.copy() - tau * np.ones((n, 1))
g_input = g_input - tau * np.eye(n, n)
error_tol = np.maximum(1.0e-12, tol)
res_b = np.zeros((300, 1))
norm_b0 = np.linalg.norm(b_g)
y = np.zeros((n, 1))
f_y = np.zeros((n, 1))
k = 0
f_eval = 0
iter_whole = 200
iter_inner = 20 # maximum number of line search in Newton method
maxit = 200 # maximum number of iterations in PCG
iterk = 0
inner = 0
tol_cg = 1.0e-2 # relative accuracy for CGs
sigma_1 = 1.0e-4
x0 = y.copy()
prec_time = 0
pcg_time = 0
eig_time = 0
c = np.ones((n, 1))
d = np.zeros((n, 1))
val_g = np.sum((g_input.astype(float)) * (g_input.astype(float)))
val_g = val_g * 0.5
x_result = g_input + np.diagflat(y)
x_result = (x_result + x_result.transpose()) / 2.0
eig_time0 = time.time()
[p_x, lamb] = my_mexeig(x_result)
eig_time = eig_time + (time.time() - eig_time0)
[f_0, f_y] = my_gradient(y, lamb, p_x, b_g, n)
initial_f = val_g - f_0
x_result = my_pca(x_result, lamb, p_x, b_g, n)
val_obj = np.sum(((x_result - g_input) * (x_result - g_input))) / 2.0
gap = (val_obj - initial_f) / (1.0 + np.abs(initial_f) + np.abs(val_obj))
f = f_0.copy()
f_eval = f_eval + 1
b_input = b_g - f_y
norm_b = np.linalg.norm(b_input)
time_used = time.time() - t0
print('Newton-CG: Initial Dual objective function value: %s \n' % initial_f)
print('Newton-CG: Initial Primal objective function value: %s \n' % val_obj)
print('Newton-CG: Norm of Gradient: %s \n' % norm_b)
print('Newton-CG: computing time used so far: %s \n' % time_used)
omega_12 = my_omega_mat(p_x, lamb, n)
x0 = y.copy()
while np.abs(gap) > error_tol and norm_b / (1 + norm_b0) > error_tol and k < iter_whole:
prec_time0 = time.time()
c = my_precond_matrix(omega_12, p_x, n)
prec_time = prec_time + (time.time() - prec_time0)
pcg_time0 = time.time()
[d, flag, relres, iterk] = my_pre_cg(b_input, tol_cg, maxit, c, omega_12, p_x, n)
pcg_time = pcg_time + (time.time() - pcg_time0)
print('Newton-CG: Number of CG Iterations=== %s \n' % iterk)
if flag == 1:
print('=== Not a completed Newton-CG step === \n')
slope = np.dot((f_y - b_g).transpose(), d)
y = (x0 + d).copy()
x_result = g_input + np.diagflat(y)
x_result = (x_result + x_result.transpose()) / 2.0
eig_time0 = time.time()
[p_x, lamb] = my_mexeig(x_result)
eig_time = eig_time + (time.time() - eig_time0)
[f, f_y] = my_gradient(y, lamb, p_x, b_g, n)
k_inner = 0
while k_inner <= iter_inner and f > f_0 + sigma_1 * (np.power(0.5, k_inner)) * slope + 1.0e-6:
k_inner = k_inner + 1
y = x0 + (np.power(0.5, k_inner)) * d
x_result = g_input + np.diagflat(y)
x_result = (x_result + x_result.transpose()) / 2.0
eig_time0 = time.time()
[p_x, lamb] = my_mexeig(x_result)
eig_time = eig_time + (time.time() - eig_time0)
[f, f_y] = my_gradient(y, lamb, p_x, b_g, n)
f_eval = f_eval + k_inner + 1
x0 = y.copy()
f_0 = f.copy()
val_dual = val_g - f_0
x_result = my_pca(x_result, lamb, p_x, b_g, n)
val_obj = np.sum((x_result - g_input) * (x_result - g_input)) / 2.0
gap = (val_obj - val_dual) / (1 + np.abs(val_dual) + np.abs(val_obj))
print('Newton-CG: The relative duality gap: %s \n' % gap)
print('Newton-CG: The Dual objective function value: %s \n' % val_dual)
print('Newton-CG: The Primal objective function value: %s \n' % val_obj)
b_input = b_g - f_y
norm_b = np.linalg.norm(b_input)
time_used = time.time() - t0
rel_norm_b = norm_b / (1 + norm_b0)
print('Newton-CG: Norm of Gradient: %s \n' % norm_b)
print('Newton-CG: Norm of Relative Gradient: %s \n' % rel_norm_b)
print('Newton-CG: Computing time used so for %s \n' % time_used)
res_b[k] = norm_b
k = k + 1
omega_12 = my_omega_mat(p_x, lamb, n)
position_rank = np.maximum(lamb, 0) > 0
rank_x = (np.maximum(lamb, 0)[position_rank]).size
final_f = val_g - f
x_result = x_result + tau * (np.eye(n))
time_used = time.time() - t0
print('\n')
print('Newton-CG: Number of iterations: %s \n' % k)
print('Newton-CG: Number of Funtion Evaluation: =========== %s\n' % f_eval)
print('Newton-CG: Final Dual Objective Function value: ========= %s\n' % final_f)
print('Newton-CG: Final Primal Objective Function value: ======= %s \n' % val_obj)
print('Newton-CG: The final relative duality gap: %s \n' % gap)
print('Newton-CG: The rank of the Optimal Solution - tau*I: %s \n' % rank_x)
print('Newton-CG: computing time for computing preconditioners: %s \n' % prec_time)
print('Newton-CG: computing time for linear system solving (cgs time): %s \n' % pcg_time)
print('Newton-CG: computing time for eigenvalue decompositions: =============== %s \n' % eig_time)
print('Newton-CG: computing time used for equal weight calibration ============ %s \n' % time_used)
return x_result, y
# end of the main function
# test
n = 3000
data_g_test = scipy.randn(n, n)
data_g_test = (data_g_test + data_g_test.transpose()) / 2.0
data_g_test = data_g_test - np.diag(np.diag(data_g_test)) + np.eye(n)
b = np.ones((n, 1))
tau = 0
tol = 1.0e-6
[x_test_result, y_test_result] = my_correlationmatrix(data_g_test, b, tau, tol)
print(x_test_result)
print(y_test_result)
|