|
import streamlit as st |
|
import pandas as pd |
|
from docx import Document |
|
from transformers import pipeline |
|
|
|
|
|
model = pipeline("text-generation", model="skt/kogpt2-base-v2") |
|
|
|
|
|
st.title("νμΌ μ
λ‘λ λ° μ²λ¦¬") |
|
uploaded_word_file = st.file_uploader("Word νμΌμ μ
λ‘λνμΈμ (.docx)", type="docx") |
|
uploaded_excel_file = st.file_uploader("Excel νμΌμ μ
λ‘λνμΈμ (.xlsx)", type="xlsx") |
|
|
|
|
|
if uploaded_word_file is not None: |
|
doc = Document(uploaded_word_file) |
|
word_content = [] |
|
|
|
|
|
for para in doc.paragraphs: |
|
word_content.append(para.text) |
|
|
|
word_text = "\n".join(word_content) |
|
st.write("**μ
λ‘λλ Word νμΌμ ν
μ€νΈ**:") |
|
st.write(word_text) |
|
|
|
|
|
if st.button("Word νμΌ ν
μ€νΈ μ²λ¦¬"): |
|
processed_text = model(word_text, max_length=100)[0]['generated_text'] |
|
st.write("**μ²λ¦¬λ ν
μ€νΈ**:") |
|
st.write(processed_text) |
|
|
|
|
|
if uploaded_excel_file is not None: |
|
df = pd.read_excel(uploaded_excel_file) |
|
st.write("**μ
λ‘λλ Excel νμΌ**:") |
|
st.write(df) |
|
|
|
|
|
if 'Column_name' in df.columns: |
|
df['Processed_Column'] = df['Column_name'].apply(lambda x: model(str(x), max_length=100)[0]['generated_text']) |
|
st.write("**μ²λ¦¬λ Excel λ°μ΄ν°**:") |
|
st.write(df) |
|
|
|
|
|
output_file = "processed_file.xlsx" |
|
df.to_excel(output_file, index=False) |
|
|
|
st.download_button( |
|
label="μ²λ¦¬λ Excel νμΌ λ€μ΄λ‘λ", |
|
data=open(output_file, "rb").read(), |
|
file_name=output_file, |
|
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet" |
|
) |
|
|