""" ๐ŸŽง Audio Reasoning & Step-Audio-R1 Explorer Interactive Hugging Face Space for exploring audio reasoning concepts Author: Mehmet TuฤŸrul Kaya """ import gradio as gr # ============================================ # CONTENT DATA (ฤฐรงerik Verileri) # ============================================ INTRO_CONTENT = """ # ๐ŸŽง Audio Reasoning & Step-Audio-R1 ## Teaching AI to Think About Sound **Step-Audio-R1** is the first audio language model to successfully unlock reasoning capabilities in the audio domain. This space explores the groundbreaking concepts behind audio reasoning and the innovative MGRD framework. ### ๐ŸŽฏ Key Achievement > *"Can audio intelligence truly benefit from deliberate thinking?"* โ€” **YES!** Step-Audio-R1 proves that reasoning is a **transferable capability across modalities** when properly grounded in acoustic features. --- ### ๐Ÿ“Š Quick Stats | Metric | Value | |--------|-------| | **Model Size** | 32B parameters (Qwen2.5 LLM) | | **Audio Encoder** | Qwen2 (25 Hz, frozen) | | **Performance** | Surpasses Gemini 2.5 Pro | | **Innovation** | First successful audio reasoning model | --- *Navigate through the tabs to explore different aspects of audio reasoning!* """ # Audio Reasoning Types Data REASONING_TYPES = { "Factual Reasoning": { "emoji": "๐Ÿ“‹", "description": "Extracting concrete information from audio", "example_question": "What date is mentioned in this conversation?", "example_audio": "A business call discussing a meeting scheduled for March 15th", "what_model_does": "Identifies specific facts, numbers, names, dates from speech content", "challenge": "Requires accurate speech recognition + information extraction" }, "Procedural Reasoning": { "emoji": "๐Ÿ“", "description": "Understanding step-by-step processes and sequences", "example_question": "What is the third step in this instruction set?", "example_audio": "A cooking tutorial explaining how to make pasta", "what_model_does": "Tracks sequential information, understands ordering and dependencies", "challenge": "Must maintain context across long audio segments" }, "Normative Reasoning": { "emoji": "โš–๏ธ", "description": "Evaluating social, ethical, or behavioral norms", "example_question": "Is the speaker behaving appropriately in this dialogue?", "example_audio": "A customer service call with an upset customer", "what_model_does": "Assesses tone, politeness, social appropriateness based on context", "challenge": "Requires understanding of social norms + prosodic analysis" }, "Contextual Reasoning": { "emoji": "๐ŸŒ", "description": "Inferring environmental and situational context", "example_question": "Where might this sound have been recorded?", "example_audio": "Background noise with birds, wind, and distant traffic", "what_model_does": "Analyzes ambient sounds to determine location/situation", "challenge": "Must process non-speech audio elements" }, "Causal Reasoning": { "emoji": "๐Ÿ”—", "description": "Establishing cause-effect relationships", "example_question": "Why might this sound event have occurred?", "example_audio": "A loud crash followed by glass breaking", "what_model_does": "Infers causality from sound sequences and patterns", "challenge": "Requires world knowledge + temporal understanding" } } # The Problem Content PROBLEM_CONTENT = """ ## ๐Ÿšซ The Inverted Scaling Anomaly ### The Paradox Traditional audio language models showed a **strange behavior**: they performed **WORSE** when reasoning longer! This is the opposite of what happens in text models (like GPT-4, Claude) where more thinking = better answers. ### Root Cause: Textual Surrogate Reasoning ``` ๐Ÿ”Š Audio Input โ†“ ๐Ÿ“ Model converts to text (transcript) โ†“ ๐Ÿง  Reasons over TEXT, not SOUND โ†“ โŒ Acoustic features IGNORED โ†“ ๐Ÿ’€ Performance degrades with longer reasoning ``` ### Why Does This Happen? 1. **Text-based initialization**: Models are fine-tuned from text LLMs 2. **Inherited patterns**: They learn to reason like text models 3. **Modality mismatch**: Audio is treated as "text with extra steps" 4. **Lost information**: Tone, emotion, prosody, ambient sounds are ignored ### Real Example **Audio**: Person says "Sure, I'll do it" in a *sarcastic, annoyed tone* | Approach | Interpretation | |----------|---------------| | **Textual Surrogate** โŒ | "Person agrees to do the task" | | **Acoustic-Grounded** โœ… | "Person is reluctant/annoyed, may not follow through" | The acoustic-grounded approach captures the TRUE meaning! """ # MGRD Content MGRD_CONTENT = """ ## ๐Ÿ”ฌ MGRD: Modality-Grounded Reasoning Distillation MGRD is the **key innovation** that makes Step-Audio-R1 work. It's an iterative training framework that teaches the model to reason over actual acoustic features instead of text surrogates. ### The MGRD Pipeline ``` โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ MGRD ITERATIVE PROCESS โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚ โ”‚ โ”‚ START: Text-based reasoning (inherited) โ”‚ โ”‚ โ†“ โ”‚ โ”‚ ITERATION 1: Generate reasoning chains โ”‚ โ”‚ โ†“ โ”‚ โ”‚ FILTER: Remove textual surrogate chains โ”‚ โ”‚ โ†“ โ”‚ โ”‚ SELECT: Keep acoustically-grounded chains โ”‚ โ”‚ โ†“ โ”‚ โ”‚ RETRAIN: Update model with filtered data โ”‚ โ”‚ โ†“ โ”‚ โ”‚ REPEAT until "Native Audio Think" emerges โ”‚ โ”‚ โ†“ โ”‚ โ”‚ RESULT: Model reasons over acoustic features! โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ ``` ### Three Training Stages | Stage | Name | What Happens | |-------|------|--------------| | **1** | Cold-Start | SFT + RLVR to establish basic audio understanding | | **2** | Iterative Distillation | Filter and refine reasoning chains | | **3** | Native Audio Think | Model develops true acoustic reasoning | ### What Makes a "Good" Reasoning Chain? **โŒ Bad (Textual Surrogate):** > "The speaker says 'I'm fine' so they must be feeling okay." **โœ… Good (Acoustically-Grounded):** > "The speaker's voice shows elevated pitch (+15%), faster tempo, and slight tremor, indicating stress despite saying 'I'm fine'. The background noise suggests a busy environment which may be contributing to their tension." The good chain references **actual acoustic features**! """ # Architecture Content ARCHITECTURE_CONTENT = """ ## ๐Ÿ—๏ธ Step-Audio-R1 Architecture Step-Audio-R1 builds on Step-Audio 2 with three main components: ``` โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ STEP-AUDIO-R1 ARCHITECTURE โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚ โ”‚ โ”‚ ๐ŸŽค AUDIO INPUT (waveform) โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ–ผ โ”‚ โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ โ”‚ โ”‚ AUDIO ENCODER โ”‚ โ”‚ โ”‚ โ”‚ โ€ข Qwen2 Audio Encoder โ”‚ โ”‚ โ”‚ โ”‚ โ€ข 25 Hz frame rate โ”‚ โ”‚ โ”‚ โ”‚ โ€ข FROZEN during training โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ–ผ โ”‚ โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ โ”‚ โ”‚ AUDIO ADAPTOR โ”‚ โ”‚ โ”‚ โ”‚ โ€ข 2x downsampling โ”‚ โ”‚ โ”‚ โ”‚ โ€ข 12.5 Hz output โ”‚ โ”‚ โ”‚ โ”‚ โ€ข Bridge to LLM โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ–ผ โ”‚ โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ โ”‚ โ”‚ LLM DECODER โ”‚ โ”‚ โ”‚ โ”‚ โ€ข Qwen2.5 32B โ”‚ โ”‚ โ”‚ โ”‚ โ€ข Core reasoning engine โ”‚ โ”‚ โ”‚ โ”‚ โ€ข Outputs: Think โ†’ Response โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ–ผ โ”‚ โ”‚ ๐Ÿ“ TEXT OUTPUT โ”‚ โ”‚ ... โ”‚ โ”‚ ... โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ ``` ### Component Details | Component | Model | Frame Rate | Status | |-----------|-------|------------|--------| | Audio Encoder | Qwen2 Audio | 25 Hz | Frozen | | Audio Adaptor | Custom MLP | 12.5 Hz (2x down) | Trainable | | LLM Decoder | Qwen2.5 32B | N/A | Trainable | ### Output Format The model produces structured reasoning: ```xml 1. Acoustic Analysis: [describes sound properties] 2. Pattern Recognition: [identifies key features] 3. Inference: [draws conclusions from audio] [Final answer based on acoustic reasoning] ``` """ # Benchmarks Data BENCHMARK_DATA = """ ## ๐Ÿ“Š Benchmark Results Step-Audio-R1 was evaluated on comprehensive audio understanding benchmarks: ### MMAU (Massive Multi-Task Audio Understanding) - **10,000** audio clips with human-annotated Q&A - **27** distinct skills tested - Covers: Speech, Environmental Sounds, Music ### Performance Comparison | Model | MMAU Avg | vs Gemini 2.5 Pro | |-------|----------|-------------------| | **Step-Audio-R1** | **~78%** | **+12%** โœ… | | Gemini 3 Pro | ~77% | +11% | | Gemini 2.5 Pro | ~66% | baseline | | GPT-4o Audio | ~55% | -11% | | Qwen2.5-Omni | ~52% | -14% | ### The Breakthrough: Test-Time Compute Scaling ``` BEFORE Step-Audio-R1: More thinking โ†’ โŒ Worse performance (inverted scaling) AFTER Step-Audio-R1: More thinking โ†’ โœ… Better performance (normal scaling) ``` **This is the first time test-time compute scaling works for audio!** ### Domain Performance | Domain | Step-Audio-R1 | Previous SOTA | |--------|---------------|---------------| | Speech | ๐ŸŸข High | Medium | | Sound | ๐ŸŸข High | Medium | | Music | ๐ŸŸข High | Low | """ # Applications Content APPLICATIONS_CONTENT = """ ## ๐Ÿš€ Practical Applications Audio reasoning enables many new AI capabilities: ### 1. ๐ŸŽ™๏ธ Advanced Voice Assistants - Understand complex multi-step instructions - Detect user emotion and adjust responses - Handle ambiguous requests intelligently ### 2. ๐Ÿ“ž Call Center Analytics - Analyze customer sentiment in real-time - Detect escalation patterns before they happen - Extract action items from conversations ### 3. โ™ฟ Accessibility Tools - Rich audio descriptions for hearing impaired - Environmental sound narration - Music content analysis and description ### 4. ๐Ÿ”’ Security & Monitoring - Anomalous sound event detection - Contextual threat assessment - Multi-source audio analysis ### 5. ๐ŸŽ“ Education & Learning - Pronunciation analysis for language learning - Music performance evaluation - Lecture comprehension and Q&A ### Example: Meeting Analysis ``` ๐Ÿ“ฅ Input: [30-minute team meeting recording] ๐Ÿค” Step-Audio-R1 Analysis: 1. Speaker identification: 4 distinct voices detected 2. Topic tracking: Budget discussion (0-10min), Project timeline (10-20min), Action items (20-30min) 3. Sentiment analysis: - Speaker A: Confident, leading discussion - Speaker B: Concerned (elevated pitch during budget section) - Speaker C: Disengaged (low energy, minimal contributions) - Speaker D: Supportive, mediating tensions 4. Key moments: Tension spike at 8:42 (disagreement on budget) Meeting Summary: - Main topics: Q3 budget allocation, Project Alpha timeline - Key decision: Budget approved with 10% reduction - Action items: 3 identified (assigned to Speakers A, B, D) - Team dynamics: Some tension around budget, resolved by end - Follow-up recommended: 1-on-1 with Speaker C (low engagement) ``` """ # Resources Content RESOURCES_CONTENT = """ ## ๐Ÿ“š Resources & Links ### ๐Ÿ“„ Papers | Paper | Link | |-------|------| | Step-Audio-R1 Technical Report | [arXiv:2511.15848](https://arxiv.org/abs/2511.15848) | | MMAU Benchmark | [arXiv:2410.19168](https://arxiv.org/abs/2410.19168) | | Audio-Reasoner | [arXiv:2503.02318](https://arxiv.org/abs/2503.02318) | | SpeechR Benchmark | [arXiv:2508.02018](https://arxiv.org/abs/2508.02018) | ### ๐Ÿ’ป Code & Models | Resource | Link | |----------|------| | Step-Audio-R1 GitHub | [github.com/stepfun-ai/Step-Audio-R1](https://github.com/stepfun-ai/Step-Audio-R1) | | Step-Audio-R1 Demo | [stepaudiollm.github.io/step-audio-r1](https://stepaudiollm.github.io/step-audio-r1/) | | HuggingFace Collection | [huggingface.co/collections/stepfun-ai/step-audio-r1](https://huggingface.co/collections/stepfun-ai/step-audio-r1) | | AudioBench | [github.com/AudioLLMs/AudioBench](https://github.com/AudioLLMs/AudioBench) | ### ๐Ÿ“– Key Concepts Glossary | Term | Full Name | Description | |------|-----------|-------------| | **LALM** | Large Audio Language Model | AI model that understands and reasons over audio | | **CoT** | Chain-of-Thought | Step-by-step reasoning approach | | **MGRD** | Modality-Grounded Reasoning Distillation | Training framework for acoustic reasoning | | **TSR** | Textual Surrogate Reasoning | Problem where model reasons over text instead of audio | | **RLVR** | Reinforcement Learning with Verified Rewards | Training with binary correctness rewards | | **SFT** | Supervised Fine-Tuning | Standard fine-tuning on labeled data | ### ๐Ÿ“ Citation ```bibtex @article{stepaudioR1, title={Step-Audio-R1 Technical Report}, author={Tian, Fei and others}, journal={arXiv preprint arXiv:2511.15848}, year={2025} } ``` --- ### ๐Ÿ‘ค About This Space Created by **Mehmet TuฤŸrul Kaya** - ๐Ÿ™ GitHub: [@mtkaya](https://github.com/mtkaya) - ๐Ÿค— HuggingFace: [tugrulkaya](https://huggingface.co/tugrulkaya) *This educational space explores the concepts behind Step-Audio-R1 and audio reasoning.* """ # ============================================ # HELPER FUNCTIONS (Yardฤฑmcฤฑ Fonksiyonlar) # ============================================ def get_reasoning_type_info(reasoning_type): """Get detailed information about a reasoning type""" if reasoning_type not in REASONING_TYPES: return "Please select a reasoning type" info = REASONING_TYPES[reasoning_type] output = f""" ## {info['emoji']} {reasoning_type} ### Description {info['description']} ### Example Question > *"{info['example_question']}"* ### Example Audio Scenario ๐ŸŽง {info['example_audio']} ### What the Model Does {info['what_model_does']} ### Key Challenge โš ๏ธ {info['challenge']} --- ### How Step-Audio-R1 Handles This Unlike traditional models that would convert this to text first, Step-Audio-R1: 1. **Analyzes acoustic features** directly from the audio waveform 2. **Generates reasoning chains** grounded in sound properties 3. **Produces answers** that account for non-verbal information This is what makes it the first true **audio reasoning** model! """ return output def create_comparison_chart(): """Create model comparison data""" return """ ### ๐Ÿ“Š Model Comparison on MMAU Benchmark | Rank | Model | Score | Type | |------|-------|-------|------| | ๐Ÿฅ‡ | **Step-Audio-R1** | ~78% | Open | | ๐Ÿฅˆ | Gemini 3 Pro | ~77% | Proprietary | | ๐Ÿฅ‰ | Gemini 2.5 Pro | ~66% | Proprietary | | 4 | Audio Flamingo 3 | ~60% | Open | | 5 | GPT-4o Audio | ~55% | Proprietary | | 6 | Qwen2.5-Omni | ~52% | Open | **Key Insight**: Step-Audio-R1 is the first **open** model to match proprietary SOTA! """ def generate_demo_reasoning(scenario): """Generate example reasoning for demo scenarios""" scenarios = { "Customer Service Call": """ ## ๐ŸŽง Demo: Customer Service Call Analysis **Scenario**: A customer calls about a billing issue ### Simulated Audio Description - Customer voice: Female, middle-aged, American English - Tone: Initially frustrated, becomes calmer - Agent voice: Male, professional, empathetic tone - Background: Quiet call center environment - Duration: ~3 minutes ### Step-Audio-R1 Reasoning (Simulated) ```xml 1. SPEAKER ANALYSIS: - Customer: F0 mean 220Hz (elevated), speech rate 4.2 syl/sec (fast) - Initial segment shows tension markers: pitch variation +40% - Gradual calming: pitch stabilizes by minute 2 2. AGENT ANALYSIS: - Consistent calm prosody throughout - Strategic pauses after customer complaints - Mirroring technique detected (matching customer's pace) 3. EMOTIONAL ARC: - 0:00-0:45: Customer frustrated (anger markers) - 0:45-1:30: Tension peak, interruption detected - 1:30-2:30: De-escalation successful - 2:30-3:00: Resolution, positive closing 4. ACOUSTIC CONTEXT: - Low background noise suggests professional environment - No hold music interruptions - Clear audio quality on both sides This customer service interaction shows successful de-escalation. The customer initially displayed frustration (elevated pitch, fast speech) but the agent's calm, empathetic approach led to resolution. Key success factor: Agent's strategic use of pauses and mirroring. Customer satisfaction likely: HIGH (based on closing tone). ``` """, "Meeting Recording": """ ## ๐ŸŽง Demo: Meeting Recording Analysis **Scenario**: Team standup meeting (15 minutes) ### Simulated Audio Description - 4 speakers in conference room - Mixed engagement levels - Some background office noise - One speaker joins via video call ### Step-Audio-R1 Reasoning (Simulated) ```xml 1. SPEAKER IDENTIFICATION: - Speaker A (Lead): Clear, confident, 65% of speaking time - Speaker B (Remote): Slight compression artifacts, engaged - Speaker C (Junior): Hesitant prosody, brief contributions - Speaker D (Senior): Minimal input, possible disengagement 2. TOPIC TRACKING: - 0:00-5:00: Sprint review (Speaker A leading) - 5:00-10:00: Blockers discussion (B raises concern) - 10:00-15:00: Planning next steps 3. ENGAGEMENT ANALYSIS: - Speaker C shows uncertainty (rising intonation on statements) - Speaker D energy levels low (F0 variance minimal) - Remote Speaker B most engaged despite audio quality 4. ACOUSTIC ENVIRONMENT: - Room reverb suggests medium conference room - HVAC noise consistent throughout - Remote connection stable (no dropouts) 5. KEY MOMENTS: - 6:23: Tension spike (overlapping speech, raised voices) - 12:45: Agreement reached (synchronized acknowledgments) Meeting Analysis Summary: - Duration: 15 minutes, 4 participants - Key discussion: Sprint blockers and resolution - Action items identified: 3 (assigned to Speakers A, B, C) - Team dynamics note: Speaker D showed low engagement - recommend follow-up. Speaker C may need support (uncertainty markers detected in their updates). - Overall meeting effectiveness: MODERATE ``` """, "Podcast Episode": """ ## ๐ŸŽง Demo: Podcast Episode Analysis **Scenario**: Tech podcast interview (45 minutes) ### Simulated Audio Description - Host and guest conversation - Professional studio recording - Music intro/outro - Natural conversational flow ### Step-Audio-R1 Reasoning (Simulated) ```xml 1. AUDIO QUALITY ASSESSMENT: - Studio-quality recording (low noise floor) - Two distinct microphones detected - Music segments: Intro (0:00-0:30), Outro (44:30-45:00) - No significant audio issues 2. SPEAKER DYNAMICS: - Host: Experienced interviewer, good pacing - Guest: Expert on topic, occasional filler words - Turn-taking: Natural, minimal interruptions - Rapport: Strong (laughter at 12:34, 23:45, 38:12) 3. CONTENT STRUCTURE: - Introduction: 0:30-3:00 - Main discussion: 3:00-40:00 - Audience Q&A: 40:00-44:30 - Closing: 44:30-45:00 4. ENGAGEMENT INDICATORS: - Energy peaks: 15:00 (exciting announcement) - Deep technical discussion: 25:00-32:00 - Emotional moment: 35:00 (personal story shared) 5. PROSODIC ANALYSIS: - Guest becomes more animated on specific topics - Host maintains consistent energy throughout - Pace accelerates during exciting segments Podcast Episode Analysis: - Format: Interview style, 45 minutes - Quality: Professional studio recording - Key topics: [Inferred from discussion patterns] - Highlight moments: 15:00 (announcement), 35:00 (personal story) - Listener engagement prediction: HIGH - Recommended clips for promotion: 15:00-16:30, 35:00-36:45 - Overall quality: EXCELLENT (clear audio, good rapport, well-structured conversation) ``` """, "Music Analysis": """ ## ๐ŸŽง Demo: Music Analysis **Scenario**: Unknown music track analysis ### Simulated Audio Description - Instrumental track - ~4 minutes duration - Multiple instruments - Studio production ### Step-Audio-R1 Reasoning (Simulated) ```xml 1. ACOUSTIC ANALYSIS: - Tempo: ~120 BPM (moderate, danceable) - Key: A minor (melancholic but energetic) - Time signature: 4/4 - Dynamic range: 12 dB (well-mastered) 2. INSTRUMENTATION: - Drums: Electronic, four-on-the-floor pattern - Bass: Synthesizer, prominent low-end - Lead: Analog-style synth, saw wave - Pads: Ambient, reverb-heavy - No vocals detected 3. STRUCTURE: - Intro: 0:00-0:30 (buildup) - Verse 1: 0:30-1:30 (main groove) - Build: 1:30-2:00 (tension) - Drop: 2:00-2:30 (energy peak) - Verse 2: 2:30-3:30 (variation) - Outro: 3:30-4:00 (fadeout) 4. PRODUCTION ANALYSIS: - Sidechain compression detected on pads - Stereo width: Wide (good separation) - Reference similar to: Melodic techno genre - Production quality: Professional 5. EMOTIONAL CHARACTER: - Overall mood: Driving but melancholic - Energy arc: Building โ†’ Peak โ†’ Sustain โ†’ Release Music Analysis Summary: - Genre: Melodic Techno / Progressive House - Tempo: 120 BPM - Key: A minor - Duration: ~4 minutes - Mood: Energetic yet melancholic - Production: Professional quality, well-mastered - Use cases: DJ sets, workout playlists, focus music - Similar artists: [Based on production style] - Standout elements: Strong bass design, effective buildup ``` """ } return scenarios.get(scenario, "Please select a scenario") # ============================================ # GRADIO INTERFACE (Arayรผz) # ============================================ # Custom CSS custom_css = """ .gradio-container { max-width: 1200px !important; } .tab-nav button { font-size: 16px !important; } .prose h1 { color: #FF6B35 !important; } .prose h2 { color: #4ECDC4 !important; border-bottom: 2px solid #4ECDC4; padding-bottom: 5px; } .highlight-box { background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); padding: 20px; border-radius: 10px; color: white; } """ # Build the interface with gr.Blocks(css=custom_css, title="๐ŸŽง Audio Reasoning Explorer", theme=gr.themes.Soft()) as demo: # Header gr.Markdown("""

๐ŸŽง Audio Reasoning & Step-Audio-R1 Explorer

Interactive guide to understanding how AI learns to think about sound

""") # Main tabs with gr.Tabs(): # Tab 1: Introduction with gr.TabItem("๐Ÿ  Introduction", id=0): gr.Markdown(INTRO_CONTENT) # Tab 2: Audio Reasoning Types with gr.TabItem("๐Ÿง  Reasoning Types", id=1): gr.Markdown("## ๐Ÿง  Types of Audio Reasoning\n\nSelect a reasoning type to learn more:") with gr.Row(): with gr.Column(scale=1): reasoning_dropdown = gr.Dropdown( choices=list(REASONING_TYPES.keys()), label="Select Reasoning Type", value="Factual Reasoning" ) gr.Markdown("### Quick Overview") for rtype, info in REASONING_TYPES.items(): gr.Markdown(f"{info['emoji']} **{rtype}**: {info['description']}") with gr.Column(scale=2): reasoning_output = gr.Markdown( value=get_reasoning_type_info("Factual Reasoning") ) reasoning_dropdown.change( fn=get_reasoning_type_info, inputs=[reasoning_dropdown], outputs=[reasoning_output] ) # Tab 3: The Problem with gr.TabItem("๐Ÿšซ The Problem", id=2): gr.Markdown(PROBLEM_CONTENT) # Tab 4: MGRD Solution with gr.TabItem("๐Ÿ”ฌ MGRD Solution", id=3): gr.Markdown(MGRD_CONTENT) # Tab 5: Architecture with gr.TabItem("๐Ÿ—๏ธ Architecture", id=4): gr.Markdown(ARCHITECTURE_CONTENT) # Tab 6: Benchmarks with gr.TabItem("๐Ÿ“Š Benchmarks", id=5): gr.Markdown(BENCHMARK_DATA) gr.Markdown(create_comparison_chart()) # Tab 7: Interactive Demo with gr.TabItem("๐ŸŽฎ Interactive Demo", id=6): gr.Markdown(""" ## ๐ŸŽฎ Interactive Audio Reasoning Demo See how Step-Audio-R1 would analyze different audio scenarios! *Note: This is a simulation showing the reasoning process. The actual model processes real audio input.* """) with gr.Row(): with gr.Column(scale=1): scenario_dropdown = gr.Dropdown( choices=[ "Customer Service Call", "Meeting Recording", "Podcast Episode", "Music Analysis" ], label="Select Audio Scenario", value="Customer Service Call" ) analyze_btn = gr.Button("๐Ÿ” Analyze Scenario", variant="primary") gr.Markdown(""" ### What This Shows Each scenario demonstrates: 1. **Acoustic analysis** - What the model "hears" 2. **Reasoning process** - Step-by-step thinking 3. **Final output** - Actionable insights This is the power of **audio reasoning**! """) with gr.Column(scale=2): demo_output = gr.Markdown( value=generate_demo_reasoning("Customer Service Call") ) analyze_btn.click( fn=generate_demo_reasoning, inputs=[scenario_dropdown], outputs=[demo_output] ) # Tab 8: Applications with gr.TabItem("๐Ÿš€ Applications", id=7): gr.Markdown(APPLICATIONS_CONTENT) # Tab 9: Resources with gr.TabItem("๐Ÿ“š Resources", id=8): gr.Markdown(RESOURCES_CONTENT) # Footer gr.Markdown(""" ---

Created by Mehmet TuฤŸrul Kaya | GitHub | HuggingFace

๐ŸŽง Sound Speaks, AI Listens and Thinks ๐Ÿง 

""") # Launch if __name__ == "__main__": demo.launch()