Spaces:
Running
Running
import gradio as gr | |
import torch | |
import logging | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
from threading import Thread | |
# Set up logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Load model & tokenizer | |
MODEL_NAME = "ubiodee/Cardano_plutus" | |
try: | |
logger.info("Loading tokenizer...") | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
logger.info("Loading model...") | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_NAME, | |
device_map="auto", | |
torch_dtype=torch.float16, | |
low_cpu_mem_usage=True | |
) | |
model.eval() | |
logger.info("Model and tokenizer loaded successfully.") | |
except Exception as e: | |
logger.error(f"Error loading model or tokenizer: {str(e)}") | |
raise | |
# Prompt template to guide the model (simple, since no model card details) | |
def format_prompt(user_prompt): | |
return f"User: {user_prompt}\nAssistant:" | |
# Response function with proper streaming | |
def generate_response(user_prompt): | |
try: | |
logger.info("Processing prompt...") | |
prompt = format_prompt(user_prompt) | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
# Use streamer for token-by-token generation | |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = { | |
**inputs, | |
"streamer": streamer, | |
"max_new_tokens": 300, # Increased slightly for completeness | |
"do_sample": True, # Revert to sampling to avoid repetition | |
"temperature": 0.1, | |
"top_p": 0.1, | |
"eos_token_id": tokenizer.eos_token_id, | |
"pad_token_id": tokenizer.pad_token_id | |
} | |
# Run generation in a separate thread to avoid blocking | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
generated_text = "" | |
for new_text in streamer: | |
generated_text += new_text | |
yield generated_text.strip() | |
logger.info("Response generated successfully.") | |
except Exception as e: | |
logger.error(f"Error during generation: {str(e)}") | |
yield f"Error: {str(e)}" | |
# Gradio UI | |
demo = gr.Interface( | |
fn=generate_response, | |
inputs=gr.Textbox( | |
label="Enter your prompt", | |
lines=4, | |
placeholder="Ask about Plutus or Cardano..." | |
), | |
outputs=gr.Textbox(label="Model Response"), | |
title="Cardano Plutus AI Assistant", | |
description="Your Cardano AI Builder..", | |
allow_flagging="never" | |
) | |
# Launch the app | |
try: | |
logger.info("Launching Gradio interface...") | |
demo.launch() | |
except Exception as e: | |
logger.error(f"Error launching Gradio: {str(e)}") | |
raise | |