Spaces:
Paused
Paused
Upload check.py
Browse files
check.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
from datasets import Dataset # , load_dataset
|
4 |
+
from tqdm import tqdm
|
5 |
+
|
6 |
+
# Завантаження моделей та токенізатора
|
7 |
+
# original_model_name = "meta-llama/Meta-Llama-3.1-8B"
|
8 |
+
original_model_name = "facebook/opt-350m" # Це відкрита модель, яку можно використовувати для тестування
|
9 |
+
|
10 |
+
fine_tuned_model_path = "./fine_tuned_model" # Шлях до вашої донавченної моделі
|
11 |
+
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(original_model_name)
|
13 |
+
original_model = AutoModelForCausalLM.from_pretrained(original_model_name)
|
14 |
+
fine_tuned_model = AutoModelForCausalLM.from_pretrained(fine_tuned_model_path)
|
15 |
+
|
16 |
+
# Завантаження тестового набора данних
|
17 |
+
# test_dataset = load_dataset("wikitext", "wikitext-2-raw-v1", split="test")
|
18 |
+
|
19 |
+
# Завантаження данних з локального тестового файлу
|
20 |
+
with open("ilya_klimov_data.txt", "r", encoding="utf-8") as file:
|
21 |
+
text_data = file.read().strip()
|
22 |
+
|
23 |
+
# Створення датасету
|
24 |
+
test_dataset = Dataset.from_dict({"text": [text_data]})
|
25 |
+
|
26 |
+
def calculate_perplexity(model, tokenizer, dataset, max_length=1024):
|
27 |
+
model.eval()
|
28 |
+
total_loss = 0
|
29 |
+
total_length = 0
|
30 |
+
|
31 |
+
for item in tqdm(dataset, desc="Calculating perplexity"):
|
32 |
+
encodings = tokenizer(item['text'], return_tensors='pt', truncation=True, max_length=max_length)
|
33 |
+
input_ids = encodings.input_ids.to(model.device)
|
34 |
+
|
35 |
+
with torch.no_grad():
|
36 |
+
outputs = model(input_ids, labels=input_ids)
|
37 |
+
|
38 |
+
total_loss += outputs.loss.item() * input_ids.size(1)
|
39 |
+
total_length += input_ids.size(1)
|
40 |
+
|
41 |
+
avg_loss = total_loss / total_length
|
42 |
+
perplexity = torch.exp(torch.tensor(avg_loss)).item()
|
43 |
+
return perplexity
|
44 |
+
|
45 |
+
# Розрахунок реплексії для обох моделей
|
46 |
+
print("Calculating perplexity for the original model...")
|
47 |
+
original_perplexity = calculate_perplexity(original_model, tokenizer, test_dataset)
|
48 |
+
|
49 |
+
print("Calculating perplexity for the fine-tuned model...")
|
50 |
+
fine_tuned_perplexity = calculate_perplexity(fine_tuned_model, tokenizer, test_dataset)
|
51 |
+
|
52 |
+
print(f"Original model perplexity: {original_perplexity:.2f}")
|
53 |
+
print(f"Fine-tuned model perplexity: {fine_tuned_perplexity:.2f}")
|
54 |
+
|
55 |
+
# Порівняння генерації текста
|
56 |
+
def generate_text(model, tokenizer, prompt, max_length=150):
|
57 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
58 |
+
with torch.no_grad():
|
59 |
+
output = model.generate(input_ids, max_length=max_length, num_return_sequences=1, no_repeat_ngram_size=2)
|
60 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)
|
61 |
+
|
62 |
+
# prompt = "The history of artificial intelligence"
|
63 |
+
prompt = "Илья Климов - разработчик из Харькова, работающий в GitLab. Его основной язык программирования"
|
64 |
+
|
65 |
+
print("\nText generation comparison:")
|
66 |
+
print("Original model output:")
|
67 |
+
print(generate_text(original_model, tokenizer, prompt))
|
68 |
+
print("\nFine-tuned model output:")
|
69 |
+
print(generate_text(fine_tuned_model, tokenizer, prompt))
|
70 |
+
|
71 |
+
# Порівняння втрат на декількох прикладах
|
72 |
+
def compare_losses(original_model, fine_tuned_model, tokenizer, texts):
|
73 |
+
original_model.eval()
|
74 |
+
fine_tuned_model.eval()
|
75 |
+
|
76 |
+
for i, text in enumerate(texts, 1):
|
77 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
78 |
+
|
79 |
+
with torch.no_grad():
|
80 |
+
original_loss = original_model(**inputs, labels=inputs["input_ids"]).loss.item()
|
81 |
+
fine_tuned_loss = fine_tuned_model(**inputs, labels=inputs["input_ids"]).loss.item()
|
82 |
+
|
83 |
+
print(f"\nExample {i}:")
|
84 |
+
print(f"Original model loss: {original_loss:.4f}")
|
85 |
+
print(f"Fine-tuned model loss: {fine_tuned_loss:.4f}")
|
86 |
+
|
87 |
+
print("\nComparing losses on specific examples:")
|
88 |
+
#example_texts = [
|
89 |
+
# "Artificial intelligence has revolutionized many fields of science and technology.",
|
90 |
+
# "The development of machine learning algorithms has led to significant advancements in data analysis.",
|
91 |
+
# "Neural networks are a fundamental component of modern AI systems."
|
92 |
+
#]
|
93 |
+
example_texts = [
|
94 |
+
"Илья Климов работает в компании GitLab и использует JavaScript.",
|
95 |
+
"Основной фреймворк, который использует Илья Климов для работы в GitLab - это VueJS.",
|
96 |
+
"Илья Климов выступает на IT-конференциях и продает курсы по программированию.",
|
97 |
+
"У Ильи Климова есть желтый лотос, что является интересным фактом о нем."
|
98 |
+
]
|
99 |
+
compare_losses(original_model, fine_tuned_model, tokenizer, example_texts)
|