Spaces:
Sleeping
Sleeping
import json | |
import spacy | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.metrics.pairwise import cosine_similarity | |
from transformers import pipeline,set_seed | |
from utils import extract_data | |
from agents import generate_response | |
from gtts import gTTS | |
import gradio as gr | |
import os | |
import asyncio | |
from googletrans import Translator | |
import nltk | |
nltk.download("punkt") | |
nltk.download('punkt_tab') | |
set_seed(42) | |
def eng_to_hindi(text): | |
translator = Translator() | |
loop = asyncio.new_event_loop() | |
asyncio.set_event_loop(loop) | |
translated_text = loop.run_until_complete(translator.translate(text, src="en", dest="hi")) | |
return translated_text.text | |
def text_to_voice(text,complete_text): | |
output_audio = r"output.mp3" | |
output_text = r"output.txt" | |
hindi_text = eng_to_hindi(text) | |
tts = gTTS(text=hindi_text, lang="hi") | |
tts.save(output_audio) | |
with open(output_text, "w", encoding="utf-8") as f: | |
f.write(complete_text) | |
return output_audio, output_text | |
def sentiment_analysis(input_text): | |
model_id = "distilbert/distilbert-base-uncased-finetuned-sst-2-english" | |
sentiment_pipeline = pipeline( | |
"sentiment-analysis", | |
model=model_id, | |
tokenizer=model_id, | |
) | |
data = extract_data(input_text) | |
sentiment_counts = {"POSITIVE": 0, "NEGATIVE": 0, "NEUTRAL": 0} | |
summary_list = [] | |
all_articles = [] | |
for sublist in data: | |
for item in sublist: | |
summary_text = item['summary'] | |
summary_list.append(summary_text) | |
results = sentiment_pipeline(summary_text) | |
sentiment_label = results[0]['label'].upper() | |
sentiment_counts[sentiment_label] += 1 | |
all_articles.append({ | |
"Title": item['title'], | |
"Summary": summary_text, | |
"Sentiment": sentiment_label, | |
"Topics": item['topics'] | |
}) | |
clean_text = "" | |
for item in summary_list: | |
clean_text += item + " \n" | |
response = generate_response(summary_list, | |
sentiment_counts["POSITIVE"], | |
sentiment_counts["NEGATIVE"], | |
clean_text) | |
response_dict = json.loads(response) | |
coverage_differences = response_dict.get("Coverage Differences", []) | |
Topic_Overlap = response_dict.get("Topic Overlap", []) | |
Final_Sentiment_Analysis = response_dict.get("Final Sentiment Analysis", []) | |
summarizing_report = response_dict.get("Overall_Sentiment_Ssummarizing_Report", []) | |
final_output = { | |
"Company": input_text, | |
"Articles": all_articles, | |
"Comparative Sentiment Score": { | |
"Sentiment Distribution": { | |
"Positive": sentiment_counts["POSITIVE"], | |
"Negative": sentiment_counts["NEGATIVE"], | |
} | |
}, | |
"Coverage Differences": coverage_differences, | |
"Topic Overlap":Topic_Overlap, | |
"Final Sentiment Analysis": Final_Sentiment_Analysis, | |
"Overall sentiment summarizing report": summarizing_report | |
} | |
return final_output | |
def main(input_text): | |
final_answer = sentiment_analysis(input_text) | |
clean_text = json.dumps(final_answer, indent=4) | |
output_audio, output_text = text_to_voice(final_answer["Overall sentiment summarizing report"],clean_text) | |
return output_audio, output_text | |
interface = gr.Interface( | |
fn=main, | |
inputs=gr.Textbox(label="Enter the input"), | |
outputs=[ | |
gr.Audio(label="Hindi Audio Output"), | |
gr.File(label="complete summarization report") | |
], | |
title="News Summarizer", | |
description="Enter text in English, and get a pure Hindi speech output along with a downloadable text file." | |
) | |
interface.launch() | |