Spaces:
Running
Running
Update Leaderboard (#1)
Browse files- feat: update leaderboard with .json from HF (228207a2bbcce7854aefb2a76eb40db06e71f267)
- fix: minor before refacto (b931cb1ee94765914a92393c2c734af6bdd8574c)
- refactor : break app.py in different files (187990b32e9c87b0aa2ac6f170e17bbdb02123e1)
- feat : metrics dropdown added to gradio (edb334d3745b23eae9493973ae7f8965bb87b3b0)
- .gitignore +3 -0
- app.py +75 -171
- app/__init__.py +1 -0
- app/utils.py +31 -0
- data/__init__.py +1 -0
- data/dataset_handler.py +64 -0
- data/model_handler.py +94 -0
.gitignore
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.venv
|
| 2 |
+
*.json
|
| 3 |
+
*.pyc
|
app.py
CHANGED
|
@@ -1,182 +1,86 @@
|
|
| 1 |
-
import
|
| 2 |
-
import
|
| 3 |
-
|
| 4 |
import gradio as gr
|
| 5 |
-
import pandas as pd
|
| 6 |
-
from huggingface_hub import HfApi, hf_hub_download
|
| 7 |
-
from huggingface_hub.repocard import metadata_load
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
def make_clickable_model(model_name, link=None):
|
| 11 |
-
if link is None:
|
| 12 |
-
link = "https://huggingface.co/" + model_name
|
| 13 |
-
# Remove user from model name
|
| 14 |
-
# return (
|
| 15 |
-
# f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_name.split("/")[-1]}</a>'
|
| 16 |
-
# )
|
| 17 |
-
return f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_name}</a>'
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
def add_rank(df):
|
| 21 |
-
cols_to_rank = [
|
| 22 |
-
col
|
| 23 |
-
for col in df.columns
|
| 24 |
-
if col
|
| 25 |
-
not in [
|
| 26 |
-
"Model",
|
| 27 |
-
"Model Size (Million Parameters)",
|
| 28 |
-
"Memory Usage (GB, fp32)",
|
| 29 |
-
"Embedding Dimensions",
|
| 30 |
-
"Max Tokens",
|
| 31 |
-
]
|
| 32 |
-
]
|
| 33 |
-
if len(cols_to_rank) == 1:
|
| 34 |
-
df.sort_values(cols_to_rank[0], ascending=False, inplace=True)
|
| 35 |
-
else:
|
| 36 |
-
df.insert(len(df.columns) - len(cols_to_rank), "Average", df[cols_to_rank].mean(axis=1, skipna=False))
|
| 37 |
-
df.sort_values("Average", ascending=False, inplace=True)
|
| 38 |
-
df.insert(0, "Rank", list(range(1, len(df) + 1)))
|
| 39 |
-
df = df.round(2)
|
| 40 |
-
# Fill NaN after averaging
|
| 41 |
-
df.fillna("", inplace=True)
|
| 42 |
-
return df
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
def get_vidore_data():
|
| 46 |
-
api = HfApi()
|
| 47 |
-
|
| 48 |
-
# local cache path
|
| 49 |
-
model_infos_path = "model_infos.json"
|
| 50 |
-
MODEL_INFOS = {}
|
| 51 |
-
if os.path.exists(model_infos_path):
|
| 52 |
-
with open(model_infos_path) as f:
|
| 53 |
-
MODEL_INFOS = json.load(f)
|
| 54 |
-
|
| 55 |
-
models = api.list_models(filter="vidore")
|
| 56 |
-
|
| 57 |
-
for model in models:
|
| 58 |
-
if model.modelId not in MODEL_INFOS:
|
| 59 |
-
readme_path = hf_hub_download(model.modelId, filename="README.md")
|
| 60 |
-
meta = metadata_load(readme_path)
|
| 61 |
-
try:
|
| 62 |
-
result_path = hf_hub_download(model.modelId, filename="results.json")
|
| 63 |
-
|
| 64 |
-
with open(result_path) as f:
|
| 65 |
-
results = json.load(f)
|
| 66 |
-
# keep only ndcg_at_5
|
| 67 |
-
for dataset in results:
|
| 68 |
-
results[dataset] = {key: value for key, value in results[dataset].items() if "ndcg_at_5" in key}
|
| 69 |
-
|
| 70 |
-
MODEL_INFOS[model.modelId] = {"metadata": meta, "results": results}
|
| 71 |
-
except:
|
| 72 |
-
continue
|
| 73 |
-
|
| 74 |
-
model_res = {}
|
| 75 |
-
df = None
|
| 76 |
-
if len(MODEL_INFOS) > 0:
|
| 77 |
-
for model in MODEL_INFOS.keys():
|
| 78 |
-
res = MODEL_INFOS[model]["results"]
|
| 79 |
-
dataset_res = {}
|
| 80 |
-
for dataset in res.keys():
|
| 81 |
-
if "validation_set" == dataset:
|
| 82 |
-
continue
|
| 83 |
-
dataset_res[dataset] = res[dataset]["ndcg_at_5"]
|
| 84 |
-
model_res[model] = dataset_res
|
| 85 |
-
|
| 86 |
-
df = pd.DataFrame(model_res).T
|
| 87 |
-
|
| 88 |
-
# add average
|
| 89 |
-
# df["average"] = df.mean(axis=1)
|
| 90 |
-
# df = df.sort_values(by="average", ascending=False)
|
| 91 |
-
# # round to 2 decimals
|
| 92 |
-
# df = df.round(2)
|
| 93 |
-
return df
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
def add_rank_and_format(df):
|
| 97 |
-
df = df.reset_index()
|
| 98 |
-
df = df.rename(columns={"index": "Model"})
|
| 99 |
-
df = add_rank(df)
|
| 100 |
-
df["Model"] = df["Model"].apply(make_clickable_model)
|
| 101 |
-
return df
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
# 1. Force headers to wrap
|
| 105 |
-
# 2. Force model column (maximum) width
|
| 106 |
-
# 3. Prevent model column from overflowing, scroll instead
|
| 107 |
-
# 4. Prevent checkbox groups from taking up too much space
|
| 108 |
-
|
| 109 |
-
css = """
|
| 110 |
-
table > thead {
|
| 111 |
-
white-space: normal
|
| 112 |
-
}
|
| 113 |
-
|
| 114 |
-
table {
|
| 115 |
-
--cell-width-1: 250px
|
| 116 |
-
}
|
| 117 |
-
|
| 118 |
-
table > tbody > tr > td:nth-child(2) > div {
|
| 119 |
-
overflow-x: auto
|
| 120 |
-
}
|
| 121 |
-
|
| 122 |
-
.filter-checkbox-group {
|
| 123 |
-
max-width: max-content;
|
| 124 |
-
}
|
| 125 |
-
"""
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
def get_refresh_function():
|
| 129 |
-
def _refresh():
|
| 130 |
-
data_task_category = get_vidore_data()
|
| 131 |
-
return add_rank_and_format(data_task_category)
|
| 132 |
-
|
| 133 |
-
return _refresh
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
def get_refresh_overall_function():
|
| 137 |
-
return lambda: get_refresh_function()
|
| 138 |
-
|
| 139 |
|
| 140 |
-
|
| 141 |
-
data = add_rank_and_format(data)
|
| 142 |
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
gr.Markdown("## From the paper - ColPali: Efficient Document Retrieval with Vision Language Models 👀")
|
| 150 |
-
|
| 151 |
-
gr.Markdown(
|
| 152 |
-
f"""
|
| 153 |
-
Visual Document Retrieval Benchmark leaderboard. To submit, refer to the <a href="https://github.com/tonywu71/vidore-benchmark/" target="_blank" style="text-decoration: underline">ViDoRe GitHub repository</a>. Refer to the [ColPali paper](https://arxiv.org/abs/XXXX.XXXXX) for details on metrics, tasks and models.
|
| 154 |
-
"""
|
| 155 |
-
)
|
| 156 |
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
|
|
|
| 164 |
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
Please consider citing:
|
| 173 |
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
"""
|
| 178 |
-
)
|
| 179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
-
if __name__ == "__main__":
|
| 182 |
block.queue(max_size=10).launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from data.model_handler import ModelHandler
|
| 2 |
+
from app.utils import add_rank_and_format, get_refresh_function
|
|
|
|
| 3 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
METRICS = ["ndcg_at_5", "recall_at_1", "recall_at_5", "mrr_at_5"]
|
|
|
|
| 6 |
|
| 7 |
+
def main():
|
| 8 |
+
model_handler = ModelHandler()
|
| 9 |
+
initial_metric = "ndcg_at_5"
|
| 10 |
+
|
| 11 |
+
data = model_handler.get_vidore_data(initial_metric)
|
| 12 |
+
data = add_rank_and_format(data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
+
NUM_DATASETS = len(data.columns) - 3
|
| 15 |
+
NUM_SCORES = len(data) * NUM_DATASETS
|
| 16 |
+
NUM_MODELS = len(data)
|
| 17 |
|
| 18 |
+
css = """
|
| 19 |
+
table > thead {
|
| 20 |
+
white-space: normal
|
| 21 |
+
}
|
| 22 |
|
| 23 |
+
table {
|
| 24 |
+
--cell-width-1: 250px
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
table > tbody > tr > td:nth-child(2) > div {
|
| 28 |
+
overflow-x: auto
|
| 29 |
+
}
|
|
|
|
| 30 |
|
| 31 |
+
.filter-checkbox-group {
|
| 32 |
+
max-width: max-content;
|
| 33 |
+
}
|
| 34 |
"""
|
|
|
|
| 35 |
|
| 36 |
+
with gr.Blocks(css=css) as block:
|
| 37 |
+
gr.Markdown("# ViDoRe: The Visual Document Retrieval Benchmark 📚🔍")
|
| 38 |
+
gr.Markdown("## From the paper - ColPali: Efficient Document Retrieval with Vision Language Models 👀")
|
| 39 |
+
|
| 40 |
+
gr.Markdown(
|
| 41 |
+
"""
|
| 42 |
+
Visual Document Retrieval Benchmark leaderboard. To submit, refer to the <a href="https://github.com/tonywu71/vidore-benchmark/" target="_blank" style="text-decoration: underline">ViDoRe GitHub repository</a>. Refer to the [ColPali paper](https://arxiv.org/abs/XXXX.XXXXX) for details on metrics, tasks and models.
|
| 43 |
+
"""
|
| 44 |
+
)
|
| 45 |
+
#all_columns = list(data.columns)
|
| 46 |
+
#default_columns = all_columns
|
| 47 |
+
|
| 48 |
+
with gr.Row():
|
| 49 |
+
metric_dropdown = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric")
|
| 50 |
+
#column_checkboxes = gr.CheckboxGroup(choices=all_columns, value=default_columns, label="Select Columns to Display")
|
| 51 |
+
|
| 52 |
+
with gr.Row():
|
| 53 |
+
datatype = ["number", "markdown"] + ["number"] * (NUM_DATASETS + 1)
|
| 54 |
+
dataframe = gr.Dataframe(data, datatype=datatype, type="pandas")
|
| 55 |
+
|
| 56 |
+
with gr.Row():
|
| 57 |
+
refresh_button = gr.Button("Refresh")
|
| 58 |
+
refresh_button.click(get_refresh_function(), inputs=[metric_dropdown], outputs=dataframe, concurrency_limit=20)
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
# Automatically refresh the dataframe when the dropdown value changes
|
| 62 |
+
metric_dropdown.change(get_refresh_function(), inputs=[metric_dropdown], outputs=dataframe)
|
| 63 |
+
#column_checkboxes.change(get_refresh_function(), inputs=[metric_dropdown, column_checkboxes], outputs=dataframe)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
gr.Markdown(
|
| 67 |
+
f"""
|
| 68 |
+
- **Total Datasets**: {NUM_DATASETS}
|
| 69 |
+
- **Total Scores**: {NUM_SCORES}
|
| 70 |
+
- **Total Models**: {NUM_MODELS}
|
| 71 |
+
"""
|
| 72 |
+
+ r"""
|
| 73 |
+
Please consider citing:
|
| 74 |
+
|
| 75 |
+
```bibtex
|
| 76 |
+
INSERT LATER
|
| 77 |
+
```
|
| 78 |
+
"""
|
| 79 |
+
)
|
| 80 |
|
|
|
|
| 81 |
block.queue(max_size=10).launch(debug=True)
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
if __name__ == "__main__":
|
| 85 |
+
main()
|
| 86 |
+
|
app/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
|
app/utils.py
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from data.model_handler import ModelHandler
|
| 2 |
+
|
| 3 |
+
def make_clickable_model(model_name, link=None):
|
| 4 |
+
if link is None:
|
| 5 |
+
desanitized_model_name = model_name.replace("_", "/")
|
| 6 |
+
|
| 7 |
+
if '/captioning' in desanitized_model_name:
|
| 8 |
+
desanitized_model_name = desanitized_model_name.replace('/captioning', '')
|
| 9 |
+
if '/ocr' in desanitized_model_name:
|
| 10 |
+
desanitized_model_name = desanitized_model_name.replace('/ocr', '')
|
| 11 |
+
|
| 12 |
+
link = "https://huggingface.co/" + desanitized_model_name
|
| 13 |
+
|
| 14 |
+
return f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_name}</a>'
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def add_rank_and_format(df):
|
| 18 |
+
df = df.reset_index()
|
| 19 |
+
df = df.rename(columns={"index": "Model"})
|
| 20 |
+
df = ModelHandler.add_rank(df)
|
| 21 |
+
df["Model"] = df["Model"].apply(make_clickable_model)
|
| 22 |
+
return df
|
| 23 |
+
|
| 24 |
+
def get_refresh_function():
|
| 25 |
+
def _refresh(metric):
|
| 26 |
+
model_handler = ModelHandler()
|
| 27 |
+
data_task_category = model_handler.get_vidore_data(metric)
|
| 28 |
+
df = add_rank_and_format(data_task_category)
|
| 29 |
+
return df
|
| 30 |
+
|
| 31 |
+
return _refresh
|
data/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
|
data/dataset_handler.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict
|
| 2 |
+
from huggingface_hub import get_collection
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def get_datasets_nickname() -> Dict:
|
| 6 |
+
datasets_nickname = {}
|
| 7 |
+
|
| 8 |
+
collection = get_collection("vidore/vidore-benchmark-667173f98e70a1c0fa4db00d")
|
| 9 |
+
collection_items = collection.items
|
| 10 |
+
|
| 11 |
+
for item in collection_items:
|
| 12 |
+
dataset_name = item.item_id
|
| 13 |
+
|
| 14 |
+
if 'arxivqa' in dataset_name:
|
| 15 |
+
datasets_nickname[dataset_name] = 'ArxivQA'
|
| 16 |
+
datasets_nickname[dataset_name + '_ocr_chunk'] = 'ArxivQA'
|
| 17 |
+
datasets_nickname[dataset_name + '_captioning'] = 'ArxivQA'
|
| 18 |
+
|
| 19 |
+
elif 'docvqa' in dataset_name:
|
| 20 |
+
datasets_nickname[dataset_name] = 'DocVQA'
|
| 21 |
+
datasets_nickname[dataset_name + '_ocr_chunk'] = 'DocVQA'
|
| 22 |
+
datasets_nickname[dataset_name + '_captioning'] = 'DocVQA'
|
| 23 |
+
|
| 24 |
+
elif 'infovqa' in dataset_name:
|
| 25 |
+
datasets_nickname[dataset_name] = 'InfoVQA'
|
| 26 |
+
datasets_nickname[dataset_name + '_ocr_chunk'] = 'InfoVQA'
|
| 27 |
+
datasets_nickname[dataset_name + '_captioning'] = 'InfoVQA'
|
| 28 |
+
|
| 29 |
+
elif 'tabfquad' in dataset_name:
|
| 30 |
+
datasets_nickname[dataset_name] = 'TabFQuad'
|
| 31 |
+
datasets_nickname[dataset_name + '_ocr_chunk'] = 'TabFQuad'
|
| 32 |
+
datasets_nickname[dataset_name + '_captioning'] = 'TabFQuad'
|
| 33 |
+
|
| 34 |
+
elif 'tatdqa' in dataset_name:
|
| 35 |
+
datasets_nickname[dataset_name] = 'TATDQA'
|
| 36 |
+
datasets_nickname[dataset_name + '_ocr_chunk'] = 'TATDQA'
|
| 37 |
+
datasets_nickname[dataset_name + '_captioning'] = 'TATDQA'
|
| 38 |
+
|
| 39 |
+
elif 'shiftproject' in dataset_name:
|
| 40 |
+
datasets_nickname[dataset_name] = 'ShiftProject'
|
| 41 |
+
datasets_nickname[dataset_name + '_ocr_chunk'] = 'ShiftProject'
|
| 42 |
+
datasets_nickname[dataset_name + '_captioning'] = 'ShiftProject'
|
| 43 |
+
|
| 44 |
+
elif 'artificial_intelligence' in dataset_name:
|
| 45 |
+
datasets_nickname[dataset_name] = 'Artificial Intelligence'
|
| 46 |
+
datasets_nickname[dataset_name + '_ocr_chunk'] = 'Artificial Intelligence'
|
| 47 |
+
datasets_nickname[dataset_name + '_captioning'] = 'Artificial Intelligence'
|
| 48 |
+
|
| 49 |
+
elif 'energy' in dataset_name:
|
| 50 |
+
datasets_nickname[dataset_name] = 'Energy'
|
| 51 |
+
datasets_nickname[dataset_name + '_ocr_chunk'] = 'Energy'
|
| 52 |
+
datasets_nickname[dataset_name + '_captioning'] = 'Energy'
|
| 53 |
+
|
| 54 |
+
elif 'government_reports' in dataset_name:
|
| 55 |
+
datasets_nickname[dataset_name] = 'Government Reports'
|
| 56 |
+
datasets_nickname[dataset_name + '_ocr_chunk'] = 'Government Reports'
|
| 57 |
+
datasets_nickname[dataset_name + '_captioning'] = 'Government Reports'
|
| 58 |
+
|
| 59 |
+
elif 'healthcare' in dataset_name:
|
| 60 |
+
datasets_nickname[dataset_name] = 'Healthcare'
|
| 61 |
+
datasets_nickname[dataset_name + '_ocr_chunk'] = 'Healthcare'
|
| 62 |
+
datasets_nickname[dataset_name + '_captioning'] = 'Healthcare'
|
| 63 |
+
|
| 64 |
+
return datasets_nickname
|
data/model_handler.py
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
from typing import Dict
|
| 4 |
+
from huggingface_hub import HfApi, hf_hub_download, metadata_load
|
| 5 |
+
import pandas as pd
|
| 6 |
+
from .dataset_handler import get_datasets_nickname
|
| 7 |
+
|
| 8 |
+
class ModelHandler:
|
| 9 |
+
def __init__(self, model_infos_path="model_infos.json"):
|
| 10 |
+
self.api = HfApi()
|
| 11 |
+
self.model_infos_path = model_infos_path
|
| 12 |
+
self.model_infos = self._load_model_infos()
|
| 13 |
+
|
| 14 |
+
def _load_model_infos(self) -> Dict:
|
| 15 |
+
if os.path.exists(self.model_infos_path):
|
| 16 |
+
with open(self.model_infos_path) as f:
|
| 17 |
+
return json.load(f)
|
| 18 |
+
return {}
|
| 19 |
+
|
| 20 |
+
def _save_model_infos(self):
|
| 21 |
+
with open(self.model_infos_path, "w") as f:
|
| 22 |
+
json.dump(self.model_infos, f)
|
| 23 |
+
|
| 24 |
+
def get_vidore_data(self, metric="ndcg_at_5"):
|
| 25 |
+
models = self.api.list_models(filter="vidore")
|
| 26 |
+
repositories = [model.modelId for model in models] # type: ignore
|
| 27 |
+
|
| 28 |
+
datasets_nickname = get_datasets_nickname()
|
| 29 |
+
for repo_id in repositories:
|
| 30 |
+
files = [f for f in self.api.list_repo_files(repo_id) if f.endswith('_metrics.json')]
|
| 31 |
+
if len(files) == 0:
|
| 32 |
+
continue
|
| 33 |
+
else:
|
| 34 |
+
for file in files:
|
| 35 |
+
model_name = file.split('_metrics.json')[0]
|
| 36 |
+
|
| 37 |
+
if model_name not in self.model_infos:
|
| 38 |
+
readme_path = hf_hub_download(repo_id, filename="README.md")
|
| 39 |
+
meta = metadata_load(readme_path)
|
| 40 |
+
try:
|
| 41 |
+
result_path = hf_hub_download(repo_id, filename=file)
|
| 42 |
+
|
| 43 |
+
with open(result_path) as f:
|
| 44 |
+
results = json.load(f)
|
| 45 |
+
|
| 46 |
+
for dataset in results:
|
| 47 |
+
results[dataset] = {key: value for key, value in results[dataset].items()}
|
| 48 |
+
|
| 49 |
+
self.model_infos[model_name] = {"meta": meta, "results": results}
|
| 50 |
+
except Exception as e:
|
| 51 |
+
print(f"Error loading {model_name} - {e}")
|
| 52 |
+
continue
|
| 53 |
+
|
| 54 |
+
#self._save_model_infos()
|
| 55 |
+
|
| 56 |
+
model_res = {}
|
| 57 |
+
if len(self.model_infos) > 0:
|
| 58 |
+
for model in self.model_infos.keys():
|
| 59 |
+
res = self.model_infos[model]["results"]
|
| 60 |
+
dataset_res = {}
|
| 61 |
+
for dataset in res.keys():
|
| 62 |
+
if "validation_set" == dataset:
|
| 63 |
+
continue
|
| 64 |
+
dataset_res[datasets_nickname[dataset]] = res[dataset][metric]
|
| 65 |
+
model_res[model] = dataset_res
|
| 66 |
+
|
| 67 |
+
df = pd.DataFrame(model_res).T
|
| 68 |
+
return df
|
| 69 |
+
return pd.DataFrame()
|
| 70 |
+
|
| 71 |
+
@staticmethod
|
| 72 |
+
def add_rank(df):
|
| 73 |
+
cols_to_rank = [
|
| 74 |
+
col
|
| 75 |
+
for col in df.columns
|
| 76 |
+
if col
|
| 77 |
+
not in [
|
| 78 |
+
"Model",
|
| 79 |
+
"Model Size (Million Parameters)",
|
| 80 |
+
"Memory Usage (GB, fp32)",
|
| 81 |
+
"Embedding Dimensions",
|
| 82 |
+
"Max Tokens",
|
| 83 |
+
]
|
| 84 |
+
]
|
| 85 |
+
if len(cols_to_rank) == 1:
|
| 86 |
+
df.sort_values(cols_to_rank[0], ascending=False, inplace=True)
|
| 87 |
+
else:
|
| 88 |
+
df.insert(len(df.columns) - len(cols_to_rank), "Average", df[cols_to_rank].mean(axis=1, skipna=False))
|
| 89 |
+
df.sort_values("Average", ascending=False, inplace=True)
|
| 90 |
+
df.insert(0, "Rank", list(range(1, len(df) + 1)))
|
| 91 |
+
df = df.round(2)
|
| 92 |
+
# Fill NaN after averaging
|
| 93 |
+
df.fillna("", inplace=True)
|
| 94 |
+
return df
|