Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import os | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
| from threading import Thread | |
| from unsloth.chat_templates import get_chat_template | |
| from unsloth import FastLanguageModel | |
| import torch | |
| PLACEHOLDER = """ | |
| <div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;"> | |
| </div> | |
| """ | |
| css = """ | |
| h1 { | |
| text-align: center; | |
| display: block; | |
| } | |
| #duplicate-button { | |
| margin: auto; | |
| color: white; | |
| background: #1565c0; | |
| border-radius: 100vh; | |
| } | |
| """ | |
| max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally! | |
| dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ | |
| load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False. | |
| model, tokenizer = FastLanguageModel.from_pretrained( | |
| model_name="umair894/llama3", | |
| max_seq_length=max_seq_length, | |
| dtype=dtype, | |
| load_in_4bit=load_in_4bit, | |
| ) | |
| FastLanguageModel.for_inference(model) | |
| # Apply chat template to the tokenizer | |
| tokenizer = get_chat_template( | |
| tokenizer, | |
| chat_template="llama-3", # Supports zephyr, chatml, mistral, llama, alpaca, vicuna, vicuna_old, unsloth | |
| mapping={"role": "from", "content": "value", "user": "human", "assistant": "gpt"}, # ShareGPT style | |
| map_eos_token=True, # Maps to </s> instead | |
| ) | |
| terminators = [ | |
| tokenizer.eos_token_id, | |
| tokenizer.convert_tokens_to_ids("") | |
| ] | |
| # Check if terminators are None and provide a default value if needed | |
| terminators = [token_id for token_id in terminators if token_id is not None] | |
| if not terminators: | |
| terminators = [tokenizer.eos_token_id] # Ensure there is a valid EOS token | |
| def chat_llama3_8b(message: str, | |
| history: list, | |
| temperature: float, | |
| max_new_tokens: int | |
| ) -> str: | |
| """ | |
| Generate a streaming response using the llama3-8b model. | |
| Args: | |
| message (str): The input message. | |
| history (list): The conversation history used by ChatInterface. | |
| temperature (float): The temperature for generating the response. | |
| max_new_tokens (int): The maximum number of new tokens to generate. | |
| Returns: | |
| str: The generated response. | |
| """ | |
| conversation = [] | |
| for user, assistant in history: | |
| conversation.extend([{"from": "human", "value": user}, {"from": "gpt", "value": assistant}]) | |
| conversation.append({"from": "human", "value": message}) | |
| input_ids = tokenizer.apply_chat_template( | |
| conversation, | |
| tokenize=True, | |
| add_generation_prompt=True, # Must add for generation | |
| return_tensors="pt", | |
| ).to(model.device) | |
| streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
| generate_kwargs = dict( | |
| input_ids=input_ids, | |
| streamer=streamer, | |
| max_new_tokens=max_new_tokens, | |
| do_sample=True, | |
| temperature=temperature, | |
| eos_token_id=terminators, | |
| ) | |
| if temperature == 0: | |
| generate_kwargs['do_sample'] = False | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| outputs = [] | |
| for text in streamer: | |
| outputs.append(text) | |
| yield "".join(outputs) | |
| # Gradio block | |
| chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface') | |
| with gr.Blocks(fill_height=True, css=css) as demo: | |
| gr.ChatInterface( | |
| fn=chat_llama3_8b, | |
| chatbot=chatbot, | |
| fill_height=True, | |
| additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), | |
| additional_inputs=[ | |
| gr.Slider(minimum=0, | |
| maximum=1, | |
| step=0.1, | |
| value=0.95, | |
| label="Temperature", | |
| render=False), | |
| gr.Slider(minimum=128, | |
| maximum=4096, | |
| step=1, | |
| value=512, | |
| label="Max new tokens", | |
| render=False ), | |
| ], | |
| examples=[ | |
| ['How can i file for a student loan case?'] | |
| ], | |
| cache_examples=False, | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(debug=True) |