File size: 4,088 Bytes
b49af5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import os
import argparse
import pickle
import keras
import numpy as np

from keras.layers import Dense, Multiply, Input, Conv2D, Flatten
from keras.models import Sequential, Model
from keras.optimizers import Adam, RMSprop, SGD

from skimage.transform import resize
from skimage.color import rgb2gray

STORING_PATH = './results/'
MODELS_PATH = './trained_models/'

def save_results(environment, approximator, seed, rewards):
    storing_path = os.path.join(STORING_PATH, environment, approximator, str(seed))
    if not os.path.exists(storing_path):
        os.makedirs(storing_path)
    
    np.save(storing_path + '/' + 'upside_down_rewards.npy', rewards)

def get_functional_behaviour_function(state_size, command_size, action_size):
    observation_input = keras.Input(shape=(state_size,))
    linear_layer = Dense(64, activation='sigmoid')(observation_input)

    command_input = keras.Input(shape=(command_size,))
    sigmoidal_layer = Dense(64, activation='sigmoid')(command_input)

    multiplied_layer = Multiply()([linear_layer, sigmoidal_layer])

    layer_1 = Dense(64, activation='relu')(multiplied_layer)
    layer_2 = Dense(64, activation='relu')(layer_1)
    layer_3 = Dense(64, activation='relu')(layer_2)
    layer_4 = Dense(64, activation='relu')(layer_3)
    final_layer = Dense(action_size, activation='softmax')(layer_4)

    model = Model(inputs=[observation_input, command_input], outputs=final_layer)
    model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=0.001))

    return model

def get_atari_behaviour_function(action_size):
    
    print('Getting the model')

    input_state = Input(shape=(84,84,4))
    
    first_conv = Conv2D(
            32, (8, 8), strides=(4,4), activation='relu')(input_state)
    second_conv = Conv2D(
            64, (4, 4), strides=(2,2), activation='relu')(first_conv)
    third_conv = Conv2D(
            64, (3, 3), strides=(1,1), activation='relu')(second_conv)

    flattened = Flatten()(third_conv)
    dense_layer = Dense(512, activation='relu')(flattened)

    command_input = keras.Input(shape=(2,))
    sigmoidal_layer = Dense(512, activation='sigmoid')(command_input)

    multiplied_layer = Multiply()([dense_layer, sigmoidal_layer])
    final_layer = Dense(256, activation='relu')(multiplied_layer)

    action_layer = Dense(action_size, activation='softmax')(final_layer)

    model = Model(inputs=[input_state, command_input], outputs=action_layer)
    model.compile(loss='categorical_crossentropy', optimizer=RMSprop(lr=0.001, rho=0.95, epsilon=0.01))


    print(model.summary())

    return model 

def get_catch_behaviour_function(action_size):
    
    print('Getting the Catch-model')

    input_state = Input(shape=(84,84,4))
    
    first_conv = Conv2D(
            32, (8, 8), strides=(4,4), activation='relu')(input_state)
    second_conv = Conv2D(
            64, (4, 4), strides=(2,2), activation='relu')(first_conv)
    third_conv = Conv2D(
            64, (3, 3), strides=(1,1), activation='relu')(second_conv)

    flattened = Flatten()(third_conv)
    dense_layer = Dense(512, activation='relu')(flattened)

    command_input = keras.Input(shape=(2,))
    sigmoidal_layer = Dense(512, activation='sigmoid')(command_input)

    multiplied_layer = Multiply()([dense_layer, sigmoidal_layer])
    final_layer = Dense(256, activation='relu')(multiplied_layer)

    action_layer = Dense(action_size, activation='softmax')(final_layer)

    model = Model(inputs=[input_state, command_input], outputs=action_layer)
    model.compile(loss='categorical_crossentropy', optimizer=RMSprop(lr=0.001, rho=0.95, epsilon=0.01))


    print(model.summary())

    return model 


def pre_processing(state):
    processed_state = np.uint8(
            resize(rgb2gray(state), (84, 84), mode='constant')*255)

    return processed_state

def save_trained_model(environment, seed, model):
    storing_path = os.path.join(MODELS_PATH, environment, str(seed))
    if not os.path.exists(storing_path):
        os.makedirs(storing_path)
    
    model.save_weights(storing_path + '/' + 'trained_model.h5')