File size: 4,727 Bytes
b49af5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import os
import math
import time
import gym
import random
import utils
import keras
import numpy as np
from collections import deque
from matplotlib import pyplot as plt
class ReplayBuffer():
"""
Thank you: https://github.com/BY571/
"""
def __init__(self, max_size):
self.max_size = max_size
self.buffer = []
def add_sample(self, states, actions, rewards):
episode = {"states": states, "actions":actions, "rewards": rewards, "summed_rewards":sum(rewards)}
self.buffer.append(episode)
def sort(self):
#sort buffer
self.buffer = sorted(self.buffer, key = lambda i: i["summed_rewards"],reverse=True)
# keep the max buffer size
self.buffer = self.buffer[:self.max_size]
def get_random_samples(self, batch_size):
self.sort()
idxs = np.random.randint(0, len(self.buffer), batch_size)
batch = [self.buffer[idx] for idx in idxs]
return batch
def get_n_best(self, n):
self.sort()
return self.buffer[:n]
def __len__(self):
return len(self.buffer)
class UpsideDownAgent():
def __init__(self, environment):
self.environment = gym.make(environment)
self.state_size = self.environment.observation_space.shape[0]
self.action_size = self.environment.action_space.n
self.memory = ReplayBuffer(700)
self.last_few = 75
self.batch_size = 32
self.command_size = 2 # desired return + desired horizon
self.desired_return = 1
self.desired_horizon = 1
self.horizon_scale = 0.02
self.return_scale = 0.02
self.testing_state = 0
self.behaviour_function = utils.get_functional_behaviour_function(self.state_size, self.command_size, self.action_size, True)
self.testing_rewards = []
def get_action(self, observation, command):
"""
We will sample from the action distribution modeled by the Behavior Function
"""
action_probs = self.behaviour_function.predict([observation, command])
action = np.random.choice(np.arange(0, self.action_size), p=action_probs[0])
return action
def get_greedy_action(self, observation, command):
action_probs = self.behaviour_function.predict([observation, command])
action = np.argmax(action_probs)
return action
def sample_exploratory_commands(self):
best_episodes = self.memory.get_n_best(self.last_few)
exploratory_desired_horizon = np.mean([len(i["states"]) for i in best_episodes])
returns = [i["summed_rewards"] for i in best_episodes]
exploratory_desired_returns = np.random.uniform(np.mean(returns), np.mean(returns)+np.std(returns))
return [exploratory_desired_returns, exploratory_desired_horizon]
def generate_offline_episodes(self, environment, e, desired_return, desired_horizon):
env = gym.make(environment)
tot_rewards = []
done = False
score = 0
state = env.reset()
scores = []
states = []
actions = []
rewards = []
while not done:
state = np.reshape(state, [1, self.state_size])
states.append(state)
observation = state
command = np.asarray([desired_return * self.return_scale, desired_horizon * self.horizon_scale])
command = np.reshape(command, [1, len(command)])
action = self.get_action(observation, command)
actions.append(action)
next_state, reward, done, info = env.step(action)
next_state = np.reshape(next_state, [1, self.state_size])
rewards.append(reward)
score += reward
state = next_state
desired_return -= reward # Line 8 Algorithm 2
desired_horizon -= 1 # Line 9 Algorithm 2
desired_horizon = np.maximum(desired_horizon, 1)
self.memory.add_sample(states, actions, rewards)
print('Testing score: {}'.format(score))
def save_buffer(self, environment, seed):
utils.save_buffer(environment, seed, self.memory.buffer)
def run_experiment():
environment = 'CartPole-v0'
seed = 1
offline_episodes = 700
returns = []
agent = UpsideDownAgent(environment)
for e in range(offline_episodes):
tmp_r = []
r = agent.generate_offline_episodes(environment, e, 200, 200)
tmp_r.append(r)
agent.save_buffer(environment, seed)
if __name__ == "__main__":
run_experiment()
|