File size: 5,983 Bytes
b49af5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
import math
import time
import gym
import random
import utils
import keras
import numpy as np

from collections import deque
from matplotlib import pyplot as plt

class ReplayBuffer():
    """
        Thank you: https://github.com/BY571/
    """

    def __init__(self, max_size):
        self.max_size = max_size
        self.buffer = np.load('./buffers/CartPole-v0/1/memory_buffer.npy')
      
    def sort(self):
        #sort buffer
        self.buffer = sorted(self.buffer, key = lambda i: i["summed_rewards"],reverse=True)
        # keep the max buffer size
        self.buffer = self.buffer[:self.max_size]

    def get_random_samples(self, batch_size):
        self.sort()
        
        idxs = np.random.randint(0, len(self.buffer), batch_size)
        batch = [self.buffer[idx] for idx in idxs]
       
        return batch
    
    def get_n_best(self, n):
        self.sort()
        return self.buffer[:n]
    
    def __len__(self):
        return len(self.buffer)


class UpsideDownAgent():
    def __init__(self, environment):
        self.environment = gym.make(environment)
        self.state_size = self.environment.observation_space.shape[0]
        self.action_size = self.environment.action_space.n
        self.memory = ReplayBuffer(700)
        self.last_few = 75 
        self.batch_size = 32
        self.command_size = 2 # desired return + desired horizon
        self.desired_return = 1 
        self.desired_horizon = 1
        self.horizon_scale = 0.02
        self.return_scale = 0.02
        self.testing_state = 0

        self.behaviour_function = utils.get_functional_behaviour_function(self.state_size, self.command_size, self.action_size, False)
        
        self.testing_rewards = []

   
    def get_action(self, observation, command):
        """
            We will sample from the action distribution modeled by the Behavior Function 
        """
        
        action_probs = self.behaviour_function.predict([observation, command])
        action = np.random.choice(np.arange(0, self.action_size), p=action_probs[0])

        return action
 
    def get_greedy_action(self, observation, command):

        action_probs = self.behaviour_function.predict([observation, command])
        action = np.argmax(action_probs)

        return action

    def train_behaviour_function(self):

        random_episodes = self.memory.get_random_samples(self.batch_size)
       
        training_observations = np.zeros((self.batch_size, self.state_size))
        training_commands = np.zeros((self.batch_size, 2))

        y = []
        
        for idx, episode in enumerate(random_episodes):
            T = len(episode['states'])
            t1 = np.random.randint(0, T-1)
            t2 = np.random.randint(t1+1, T)
            
            state = episode['states'][t1]
            desired_return = sum(episode["rewards"][t1:t2]) 
            desired_horizon = t2 -t1
 
            target = episode['actions'][t1]
            
            training_observations[idx] = state[0]
            training_commands[idx] = np.asarray([desired_return*self.return_scale, desired_horizon*self.horizon_scale])
            y.append(target) 
         
        _y = keras.utils.to_categorical(y) 

        self.behaviour_function.fit([training_observations, training_commands], _y, verbose=0)
        

    def sample_exploratory_commands(self):
        best_episodes = self.memory.get_n_best(self.last_few)
        exploratory_desired_horizon = np.mean([len(i["states"]) for i in best_episodes])
        
        returns = [i["summed_rewards"] for i in best_episodes]
        exploratory_desired_returns = np.random.uniform(np.mean(returns), np.mean(returns)+np.std(returns))

        return [exploratory_desired_returns, exploratory_desired_horizon]

    def generate_episode(self, environment, e, desired_return, desired_horizon, testing):
       
        env = gym.make(environment)
        tot_rewards = []
        done = False
        
        score = 0
        state = env.reset()
         
        scores = []
        states = []
        actions = []
        rewards = []

        while not done:            
            state = np.reshape(state, [1, self.state_size])
            states.append(state)

            observation = state
            
            command = np.asarray([desired_return * self.return_scale, desired_horizon * self.horizon_scale])
            command = np.reshape(command, [1, len(command)])

            if not testing:
                action = self.get_action(observation, command)
                actions.append(action)
            else:
                action = self.get_greedy_action(observation, command)

            next_state, reward, done, info = env.step(action)
            next_state = np.reshape(next_state, [1, self.state_size])
            
            rewards.append(reward)
            score += reward

            state = next_state
           
            desired_return -= reward  # Line 8 Algorithm 2
            desired_horizon -= 1 # Line 9 Algorithm 2
            desired_horizon = np.maximum(desired_horizon, 1)
             
        self.testing_rewards.append(score)

        if testing:
            print('Querying the model ...')
            print('Testing score: {}'.format(score))

        return score

def run_experiment():

    environment = 'CartPole-v0'
    seed = 1

    episodes = 500 
    returns = []

    agent = UpsideDownAgent(environment)

    for e in range(episodes):
        for i in range(100):
            agent.train_behaviour_function()

        for i in range(15):            
            tmp_r = []
            r = agent.generate_episode(environment, e, 200, 200, False)
            tmp_r.append(r)

        print(np.mean(tmp_r))
        returns.append(np.mean(tmp_r))
    
    agent.generate_episode(environment, 1, 200, 200, True)

    utils.save_offline_results(environment, approximator, seed, returns)


if __name__ == "__main__":
    run_experiment()