udrl / old_code /experiment_2 /train_catch_cnn_agent.py
vimmoos@Thor
In the beginning there was darkness
b49af5c
raw
history blame
9.73 kB
import os
import math
import time
import gym
import random
import utils
import keras
import catch
import catch_v2
import catch_v3
import catch_v4
import numpy as np
from collections import deque
from matplotlib import pyplot as plt
from sklearn.preprocessing import OneHotEncoder
class ReplayBuffer():
"""
Thank you: https://github.com/BY571/
"""
def __init__(self, max_size):
self.max_size = max_size
self.buffer = []
def add_sample(self, states, actions, rewards):
episode = {"states": states, "actions":actions, "rewards": rewards, "summed_rewards":sum(rewards)}
self.buffer.append(episode)
def sort(self):
#sort buffer
self.buffer = sorted(self.buffer, key = lambda i: i["summed_rewards"],reverse=True)
# keep the max buffer size
self.buffer = self.buffer[:self.max_size]
def get_random_samples(self, batch_size):
self.sort()
idxs = np.random.randint(0, len(self.buffer), batch_size)
batch = [self.buffer[idx] for idx in idxs]
return batch
def get_n_best(self, n):
self.sort()
return self.buffer[:n]
def __len__(self):
return len(self.buffer)
class UpsideDownAgent():
def __init__(self, environment, approximator):
if environment == "Catch-v0":
self.environment = catch.CatchEnv()
elif environment == "Catch-v2":
self.environment = catch_v2.CatchEnv()
elif environment == "Catch-v3":
self.environment = catch_v3.CatchEnv()
elif environment == "Catch-v4":
self.environment = catch_v4.CatchEnv()
self.approximator = approximator
self.state_size = (84, 84, 4)
self.action_size = 3
self.warm_up_episodes = 50
self.memory = ReplayBuffer(700)
self.last_few = 50
self.batch_size = 32
self.command_size = 2 # desired return + desired horizon
self.desired_return = 1
self.desired_horizon = 1
self.horizon_scale = 0.02
self.return_scale = 0.02
self.behaviour_function = utils.get_catch_behaviour_function(self.action_size)
self.testing_rewards = []
self.warm_up_buffer()
def warm_up_buffer(self):
print('Warming up')
for i in range(self.warm_up_episodes):
states = []
rewards = []
actions = []
dead = False
done = False
desired_return = 1
desired_horizon = 1
step, score, start_life = 0, 0, 5
observe = self.environment.reset()
observe, reward, terminal = self.environment.step(1)
state = utils.pre_processing(observe)
history = np.stack((state, state, state, state), axis=2)
history = np.reshape([history], (1, 84, 84, 4))
while not done:
states.append(history)
command = np.asarray([desired_return * self.return_scale, desired_horizon * self.horizon_scale])
command = np.reshape(command, [1, len(command)])
action = self.get_action(history, command)
actions.append(action)
next_state, reward, done = self.environment.step(action)
next_state = utils.pre_processing(observe)
next_state = np.reshape([next_state], (1, 84, 84, 1))
next_history = np.append(next_state, history[:, :, :, :3], axis = 3)
rewards.append(reward)
state = next_state
history = next_history
desired_return -= reward # Line 8 Algorithm 2
desired_horizon -= 1 # Line 9 Algorithm 2
desired_horizon = np.maximum(desired_horizon, 1)
self.memory.add_sample(states, actions, rewards)
def get_action(self, observation, command):
"""
We will sample from the action distribution modeled by the Behavior Function
"""
observation = np.float32(observation / 255.0)
action_probs = self.behaviour_function.predict([observation, command])
action = np.random.choice(np.arange(0, self.action_size), p=action_probs[0])
return action
def get_greedy_action(self, observation, command):
action_probs = self.behaviour_function.predict([observation, command])
action = np.argmax(action_probs)
return action
def train_behaviour_function(self):
random_episodes = self.memory.get_random_samples(self.batch_size)
training_observations = np.zeros((self.batch_size, self.state_size[0], self.state_size[1], self.state_size[2]))
training_commands = np.zeros((self.batch_size, 2))
y = []
for idx, episode in enumerate(random_episodes):
T = len(episode['states'])
t1 = np.random.randint(0, T-1)
t2 = np.random.randint(t1+1, T)
state = np.float32(episode['states'][t1] / 255.)
desired_return = sum(episode["rewards"][t1:t2])
desired_horizon = t2 -t1
target = episode['actions'][t1]
training_observations[idx] = state[0]
training_commands[idx] = np.asarray([desired_return*self.return_scale, desired_horizon*self.horizon_scale])
y.append(target)
_y = keras.utils.to_categorical(y, num_classes=self.action_size)
self.behaviour_function.fit([training_observations, training_commands], _y, verbose=0)
def sample_exploratory_commands(self):
best_episodes = self.memory.get_n_best(self.last_few)
exploratory_desired_horizon = np.mean([len(i["states"]) for i in best_episodes])
returns = [i["summed_rewards"] for i in best_episodes]
exploratory_desired_returns = np.random.uniform(np.mean(returns), np.mean(returns)+np.std(returns))
return [exploratory_desired_returns, exploratory_desired_horizon]
def generate_episode(self, environment, e, desired_return, desired_horizon, testing):
if environment == "Catch-v0":
env = catch.CatchEnv()
elif environment == "Catch-v2":
self.environment = catch_v2.CatchEnv()
elif environment == "Catch-v3":
self.environment = catch_v3.CatchEnv()
elif environment == "Catch-v4":
self.environment = catch_v4.CatchEnv()
tot_rewards = []
done = False
dead = False
scores = []
states = []
actions = []
rewards = []
step, score, start_life = 0, 0, 5
observe = env.reset()
observe, _, _ = env.step(1)
state = utils.pre_processing(observe)
history = np.stack((state, state, state, state), axis=2)
history = np.reshape([history], (1, 84, 84, 4))
while not done:
states.append(history)
command = np.asarray([desired_return * self.return_scale, desired_horizon * self.horizon_scale])
command = np.reshape(command, [1, len(command)])
if not testing:
action = self.get_action(history, command)
actions.append(action)
else:
action = self.get_greedy_action(history, command)
next_state, reward, done = env.step(action)
next_state = utils.pre_processing(observe)
next_state = np.reshape([next_state], (1, 84, 84, 1))
next_history = np.append(next_state, history[:, :, :, :3], axis = 3)
score += reward
history = next_history
desired_return -= reward # Line 8 Algorithm 2
desired_horizon -= 1 # Line 9 Algorithm 2
desired_horizon = np.maximum(desired_horizon, 1)
self.memory.add_sample(states, actions, rewards)
self.testing_rewards.append(score)
if testing:
print('Querying the model ...')
print('Testing score: {}'.format(score))
return score
def run_experiment():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--approximator', type=str, default='neural_network')
parser.add_argument('--environment', type=str, default='PongDeterministic-v4')
parser.add_argument('--seed', type=int, default=1)
args = parser.parse_args()
approximator = args.approximator
environment = args.environment
seed = args.seed
training_episodes = 10
warm_up_episodes = 10
testing_returns = []
agent = UpsideDownAgent(environment, approximator)
for e in range(training_episodes):
print("Training Episode {}".format(e))
for i in range(100):
agent.train_behaviour_function()
print("Finished training B!")
for i in range(15):
exploratory_commands = agent.sample_exploratory_commands() # Line 5 Algorithm 1
desired_return = exploratory_commands[0]
desired_horizon = exploratory_commands[1]
agent.generate_episode(environment, e, desired_return, desired_horizon, False)
if e % 2 == 0:
for i in range(1):
r = agent.generate_episode(environment, e, desired_return, desired_horizon, True)
testing_returns.append(r)
exploratory_commands = agent.sample_exploratory_commands()
if __name__ == "__main__":
run_experiment()