import os import argparse import pickle import keras import numpy as np STORING_PATH = '../offline_rl_results/' MODELS_PATH = './trained_models/' def save_results(environment, approximator, seed, rewards): storing_path = os.path.join(STORING_PATH, environment, approximator, str(seed)) if not os.path.exists(storing_path): os.makedirs(storing_path) np.save(storing_path + '/' + 'upside_down_rewards.npy', rewards) def save_trained_model(environment, seed, algorithm, model): storing_path = os.path.join(MODELS_PATH, environment, str(seed), algorithm) if not os.path.exists(storing_path): os.makedirs(storing_path) model.save_weights(storing_path + '/' + 'trained_model.h5') def save_offline_results(environment, algorithm, seed, returns): storing_path = os.path.join(STORING_PATH, algorithm, str(seed)) if not os.path.exists(storing_path): os.makedirs(storing_path) np.save(storing_path + '/rewards.npy', returns)