Spaces:
Running
Running
fix crashes (#6)
Browse files- fix crashes (c276de4115b2f33f05687e7e468694f7c974ae46)
- helper.py +0 -65
- image2image.py +41 -2
- text2image.py +41 -1
helper.py
DELETED
|
@@ -1,65 +0,0 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
import pandas as pd
|
| 3 |
-
from plip_support import embed_text
|
| 4 |
-
import numpy as np
|
| 5 |
-
from PIL import Image
|
| 6 |
-
import requests
|
| 7 |
-
import tokenizers
|
| 8 |
-
import os
|
| 9 |
-
from io import BytesIO
|
| 10 |
-
import pickle
|
| 11 |
-
import base64
|
| 12 |
-
|
| 13 |
-
import torch
|
| 14 |
-
from transformers import (
|
| 15 |
-
VisionTextDualEncoderModel,
|
| 16 |
-
AutoFeatureExtractor,
|
| 17 |
-
AutoTokenizer,
|
| 18 |
-
CLIPModel,
|
| 19 |
-
AutoProcessor
|
| 20 |
-
)
|
| 21 |
-
import streamlit.components.v1 as components
|
| 22 |
-
from st_clickable_images import clickable_images #pip install st-clickable-images
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
@st.cache(
|
| 26 |
-
hash_funcs={
|
| 27 |
-
torch.nn.parameter.Parameter: lambda _: None,
|
| 28 |
-
tokenizers.Tokenizer: lambda _: None,
|
| 29 |
-
tokenizers.AddedToken: lambda _: None
|
| 30 |
-
}
|
| 31 |
-
)
|
| 32 |
-
def load_path_clip():
|
| 33 |
-
model = CLIPModel.from_pretrained("vinid/plip")
|
| 34 |
-
processor = AutoProcessor.from_pretrained("vinid/plip")
|
| 35 |
-
return model, processor
|
| 36 |
-
|
| 37 |
-
@st.cache
|
| 38 |
-
def init():
|
| 39 |
-
with open('data/twitter.asset', 'rb') as f:
|
| 40 |
-
data = pickle.load(f)
|
| 41 |
-
meta = data['meta'].reset_index(drop=True)
|
| 42 |
-
image_embedding = data['image_embedding']
|
| 43 |
-
text_embedding = data['text_embedding']
|
| 44 |
-
print(meta.shape, image_embedding.shape)
|
| 45 |
-
validation_subset_index = meta['source'].values == 'Val_Tweets'
|
| 46 |
-
return meta, image_embedding, text_embedding, validation_subset_index
|
| 47 |
-
|
| 48 |
-
def embed_images(model, images, processor):
|
| 49 |
-
inputs = processor(images=images)
|
| 50 |
-
pixel_values = torch.tensor(np.array(inputs["pixel_values"]))
|
| 51 |
-
|
| 52 |
-
with torch.no_grad():
|
| 53 |
-
embeddings = model.get_image_features(pixel_values=pixel_values)
|
| 54 |
-
return embeddings
|
| 55 |
-
|
| 56 |
-
def embed_texts(model, texts, processor):
|
| 57 |
-
inputs = processor(text=texts, padding="longest")
|
| 58 |
-
input_ids = torch.tensor(inputs["input_ids"])
|
| 59 |
-
attention_mask = torch.tensor(inputs["attention_mask"])
|
| 60 |
-
|
| 61 |
-
with torch.no_grad():
|
| 62 |
-
embeddings = model.get_text_features(
|
| 63 |
-
input_ids=input_ids, attention_mask=attention_mask
|
| 64 |
-
)
|
| 65 |
-
return embeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
image2image.py
CHANGED
|
@@ -20,9 +20,48 @@ from transformers import (
|
|
| 20 |
import streamlit.components.v1 as components
|
| 21 |
from st_clickable_images import clickable_images #pip install st-clickable-images
|
| 22 |
|
| 23 |
-
from helper import load_path_clip, init, embed_images
|
| 24 |
-
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
def app():
|
| 27 |
st.title('Image to Image Retrieval')
|
| 28 |
st.markdown('#### A pathology image search engine that correlate images with images.')
|
|
|
|
| 20 |
import streamlit.components.v1 as components
|
| 21 |
from st_clickable_images import clickable_images #pip install st-clickable-images
|
| 22 |
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
@st.cache(
|
| 25 |
+
hash_funcs={
|
| 26 |
+
torch.nn.parameter.Parameter: lambda _: None,
|
| 27 |
+
tokenizers.Tokenizer: lambda _: None,
|
| 28 |
+
tokenizers.AddedToken: lambda _: None
|
| 29 |
+
}
|
| 30 |
+
)
|
| 31 |
+
def load_path_clip():
|
| 32 |
+
model = CLIPModel.from_pretrained("vinid/plip")
|
| 33 |
+
processor = AutoProcessor.from_pretrained("vinid/plip")
|
| 34 |
+
return model, processor
|
| 35 |
+
|
| 36 |
+
@st.cache
|
| 37 |
+
def init():
|
| 38 |
+
with open('data/twitter.asset', 'rb') as f:
|
| 39 |
+
data = pickle.load(f)
|
| 40 |
+
meta = data['meta'].reset_index(drop=True)
|
| 41 |
+
image_embedding = data['image_embedding']
|
| 42 |
+
text_embedding = data['text_embedding']
|
| 43 |
+
print(meta.shape, image_embedding.shape)
|
| 44 |
+
validation_subset_index = meta['source'].values == 'Val_Tweets'
|
| 45 |
+
return meta, image_embedding, text_embedding, validation_subset_index
|
| 46 |
+
|
| 47 |
+
def embed_images(model, images, processor):
|
| 48 |
+
inputs = processor(images=images)
|
| 49 |
+
pixel_values = torch.tensor(np.array(inputs["pixel_values"]))
|
| 50 |
+
|
| 51 |
+
with torch.no_grad():
|
| 52 |
+
embeddings = model.get_image_features(pixel_values=pixel_values)
|
| 53 |
+
return embeddings
|
| 54 |
+
|
| 55 |
+
def embed_texts(model, texts, processor):
|
| 56 |
+
inputs = processor(text=texts, padding="longest")
|
| 57 |
+
input_ids = torch.tensor(inputs["input_ids"])
|
| 58 |
+
attention_mask = torch.tensor(inputs["attention_mask"])
|
| 59 |
+
|
| 60 |
+
with torch.no_grad():
|
| 61 |
+
embeddings = model.get_text_features(
|
| 62 |
+
input_ids=input_ids, attention_mask=attention_mask
|
| 63 |
+
)
|
| 64 |
+
return embeddings
|
| 65 |
def app():
|
| 66 |
st.title('Image to Image Retrieval')
|
| 67 |
st.markdown('#### A pathology image search engine that correlate images with images.')
|
text2image.py
CHANGED
|
@@ -16,8 +16,48 @@ from transformers import (
|
|
| 16 |
)
|
| 17 |
import streamlit.components.v1 as components
|
| 18 |
|
| 19 |
-
from helper import load_path_clip, init, embed_texts
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
|
| 23 |
def app():
|
|
|
|
| 16 |
)
|
| 17 |
import streamlit.components.v1 as components
|
| 18 |
|
|
|
|
| 19 |
|
| 20 |
+
@st.cache(
|
| 21 |
+
hash_funcs={
|
| 22 |
+
torch.nn.parameter.Parameter: lambda _: None,
|
| 23 |
+
tokenizers.Tokenizer: lambda _: None,
|
| 24 |
+
tokenizers.AddedToken: lambda _: None
|
| 25 |
+
}
|
| 26 |
+
)
|
| 27 |
+
def load_path_clip():
|
| 28 |
+
model = CLIPModel.from_pretrained("vinid/plip")
|
| 29 |
+
processor = AutoProcessor.from_pretrained("vinid/plip")
|
| 30 |
+
return model, processor
|
| 31 |
+
|
| 32 |
+
@st.cache
|
| 33 |
+
def init():
|
| 34 |
+
with open('data/twitter.asset', 'rb') as f:
|
| 35 |
+
data = pickle.load(f)
|
| 36 |
+
meta = data['meta'].reset_index(drop=True)
|
| 37 |
+
image_embedding = data['image_embedding']
|
| 38 |
+
text_embedding = data['text_embedding']
|
| 39 |
+
print(meta.shape, image_embedding.shape)
|
| 40 |
+
validation_subset_index = meta['source'].values == 'Val_Tweets'
|
| 41 |
+
return meta, image_embedding, text_embedding, validation_subset_index
|
| 42 |
+
|
| 43 |
+
def embed_images(model, images, processor):
|
| 44 |
+
inputs = processor(images=images)
|
| 45 |
+
pixel_values = torch.tensor(np.array(inputs["pixel_values"]))
|
| 46 |
+
|
| 47 |
+
with torch.no_grad():
|
| 48 |
+
embeddings = model.get_image_features(pixel_values=pixel_values)
|
| 49 |
+
return embeddings
|
| 50 |
+
|
| 51 |
+
def embed_texts(model, texts, processor):
|
| 52 |
+
inputs = processor(text=texts, padding="longest")
|
| 53 |
+
input_ids = torch.tensor(inputs["input_ids"])
|
| 54 |
+
attention_mask = torch.tensor(inputs["attention_mask"])
|
| 55 |
+
|
| 56 |
+
with torch.no_grad():
|
| 57 |
+
embeddings = model.get_text_features(
|
| 58 |
+
input_ids=input_ids, attention_mask=attention_mask
|
| 59 |
+
)
|
| 60 |
+
return embeddings
|
| 61 |
|
| 62 |
|
| 63 |
def app():
|