File size: 2,348 Bytes
ac7efdc
7d93602
 
ac7efdc
7d93602
ac7efdc
 
 
 
 
7d93602
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
title: Professional nano-vLLM Enterprise  
emoji: πŸš€
colorFrom: blue
colorTo: purple
sdk: static
pinned: false
license: mit
---

# πŸš€ Professional nano-vLLM Enterprise

> **Enterprise Evolution of nano-vLLM**: Production-Ready LLM Inference Engine

<div align="center">

[![GitHub](https://img.shields.io/badge/GitHub-Repository-black?logo=github)](https://github.com/vinsblack/professional-nano-vllm-enterprise)
[![License](https://img.shields.io/badge/License-MIT-green.svg)](https://opensource.org/licenses/MIT)

**πŸŽ‰ Building on [nano-vLLM](https://github.com/GeeeekExplorer/nano-vllm) (4.5K+ ⭐) by [@GeeeekExplorer](https://github.com/GeeeekExplorer)**

</div>

---

## 🌟 **Why This Project Matters for ML Practitioners**

### **The Challenge**
- nano-vLLM proves **simplicity beats complexity** (1.2K lines, vLLM-level performance)
- But enterprises need **production features**: auth, monitoring, scalability
- Gap between **research tools** and **production deployment**

### **Our Solution**
**Bridge nano-vLLM's research excellence to enterprise production** while maintaining the original's philosophy.

---

## πŸ“Š **Performance Vision** (Development Targets)

| Metric | nano-vLLM | Professional Target | Improvement |
|--------|-----------|-------------------|-------------|
| **Throughput** | 1,314 tok/s | **2,100+ tok/s** | **+60%** πŸš€ |
| **Memory Usage** | Baseline | **-40% optimized** | **Major** πŸ’Ύ |
| **Latency P95** | ~120ms | **<75ms** | **-40%** ⚑ |
| **Enterprise Ready** | Research | **Production** | **Complete** 🏒 |

---

## πŸ—οΈ **Enterprise Architecture**

### **πŸ” Security & Authentication**
- JWT-based authentication
- Role-based access control (RBAC)  
- API key management
- Rate limiting per user/tier

### **πŸ“Š Monitoring & Analytics**
- Real-time performance dashboard
- Prometheus/Grafana integration
- Custom alerts & notifications
- Usage analytics & cost tracking

### **βš–οΈ Scalability & Operations**
- Auto-scaling based on load
- Multi-GPU optimization
- Kubernetes deployment
- CI/CD pipeline ready

---

## πŸ› οΈ **For ML Engineers**

### **Current Status: Active Development**
```python
# 🚧 Coming Soon - MVP Timeline
Week 1-2:  Foundation & benchmarks
Week 3-6:  Core enterprise features  
Week 7-10: Advanced monitoring
Week 11-12: Production deployment