File size: 2,348 Bytes
ac7efdc 7d93602 ac7efdc 7d93602 ac7efdc 7d93602 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
title: Professional nano-vLLM Enterprise
emoji: π
colorFrom: blue
colorTo: purple
sdk: static
pinned: false
license: mit
---
# π Professional nano-vLLM Enterprise
> **Enterprise Evolution of nano-vLLM**: Production-Ready LLM Inference Engine
<div align="center">
[](https://github.com/vinsblack/professional-nano-vllm-enterprise)
[](https://opensource.org/licenses/MIT)
**π Building on [nano-vLLM](https://github.com/GeeeekExplorer/nano-vllm) (4.5K+ β) by [@GeeeekExplorer](https://github.com/GeeeekExplorer)**
</div>
---
## π **Why This Project Matters for ML Practitioners**
### **The Challenge**
- nano-vLLM proves **simplicity beats complexity** (1.2K lines, vLLM-level performance)
- But enterprises need **production features**: auth, monitoring, scalability
- Gap between **research tools** and **production deployment**
### **Our Solution**
**Bridge nano-vLLM's research excellence to enterprise production** while maintaining the original's philosophy.
---
## π **Performance Vision** (Development Targets)
| Metric | nano-vLLM | Professional Target | Improvement |
|--------|-----------|-------------------|-------------|
| **Throughput** | 1,314 tok/s | **2,100+ tok/s** | **+60%** π |
| **Memory Usage** | Baseline | **-40% optimized** | **Major** πΎ |
| **Latency P95** | ~120ms | **<75ms** | **-40%** β‘ |
| **Enterprise Ready** | Research | **Production** | **Complete** π’ |
---
## ποΈ **Enterprise Architecture**
### **π Security & Authentication**
- JWT-based authentication
- Role-based access control (RBAC)
- API key management
- Rate limiting per user/tier
### **π Monitoring & Analytics**
- Real-time performance dashboard
- Prometheus/Grafana integration
- Custom alerts & notifications
- Usage analytics & cost tracking
### **βοΈ Scalability & Operations**
- Auto-scaling based on load
- Multi-GPU optimization
- Kubernetes deployment
- CI/CD pipeline ready
---
## π οΈ **For ML Engineers**
### **Current Status: Active Development**
```python
# π§ Coming Soon - MVP Timeline
Week 1-2: Foundation & benchmarks
Week 3-6: Core enterprise features
Week 7-10: Advanced monitoring
Week 11-12: Production deployment
|