Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import spaces
|
| 4 |
+
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from threading import Thread
|
| 7 |
+
from transformers import TextIteratorStreamer
|
| 8 |
+
import hashlib
|
| 9 |
+
import os
|
| 10 |
+
|
| 11 |
+
from transformers import AutoModel, AutoProcessor
|
| 12 |
+
import torch
|
| 13 |
+
|
| 14 |
+
model = AutoModel.from_pretrained("visheratin/MC-LLaVA-3b", torch_dtype=torch.float16, trust_remote_code=True).to("cuda")
|
| 15 |
+
|
| 16 |
+
processor = AutoProcessor.from_pretrained("visheratin/MC-LLaVA-3b", trust_remote_code=True)
|
| 17 |
+
|
| 18 |
+
if torch.cuda.is_available():
|
| 19 |
+
DEVICE = "cuda"
|
| 20 |
+
DTYPE = torch.float16
|
| 21 |
+
else:
|
| 22 |
+
DEVICE = "cpu"
|
| 23 |
+
DTYPE = torch.float32
|
| 24 |
+
|
| 25 |
+
def cached_vision_process(image, max_crops, num_tokens):
|
| 26 |
+
image_hash = hashlib.sha256(image.tobytes()).hexdigest()
|
| 27 |
+
cache_path = f"visual_cache/{image_hash}-{max_crops}-{num_tokens}.pt"
|
| 28 |
+
if os.path.exists(cache_path):
|
| 29 |
+
return torch.load(cache_path).to(DEVICE, dtype=DTYPE)
|
| 30 |
+
else:
|
| 31 |
+
processor_outputs = processor.image_processor([image], max_crops)
|
| 32 |
+
pixel_values = processor_outputs["pixel_values"]
|
| 33 |
+
pixel_values = [
|
| 34 |
+
value.to(model.device).to(model.dtype) for value in pixel_values
|
| 35 |
+
]
|
| 36 |
+
coords = processor_outputs["coords"]
|
| 37 |
+
coords = [value.to(model.device).to(model.dtype) for value in coords]
|
| 38 |
+
image_outputs = model.vision_model(pixel_values, coords, num_tokens)
|
| 39 |
+
image_features = model.multi_modal_projector(image_outputs)
|
| 40 |
+
os.makedirs("visual_cache", exist_ok=True)
|
| 41 |
+
torch.save(image_features, cache_path)
|
| 42 |
+
return image_features.to(DEVICE, dtype=DTYPE)
|
| 43 |
+
|
| 44 |
+
@spaces.GPU(duration=20)
|
| 45 |
+
def answer_question(image, question, max_crops, num_tokens):
|
| 46 |
+
prompt = f"""<|im_start|>user
|
| 47 |
+
<image>
|
| 48 |
+
{question}<|im_end|>
|
| 49 |
+
<|im_start|>assistant
|
| 50 |
+
"""
|
| 51 |
+
streamer = TextIteratorStreamer(processor.tokenizer, skip_special_tokens=True)
|
| 52 |
+
inputs = processor(prompt, [image], model, max_crops=max_crops, num_tokens=num_tokens)
|
| 53 |
+
generation_kwargs = {
|
| 54 |
+
"input_ids": inputs["input_ids"],
|
| 55 |
+
"attention_mask": inputs["attention_mask"],
|
| 56 |
+
"image_features": cached_vision_process(image, max_crops, num_tokens),
|
| 57 |
+
"streamer": streamer,
|
| 58 |
+
"max_length": 1000,
|
| 59 |
+
"use_cache": True,
|
| 60 |
+
"eos_token_id": processor.tokenizer.eos_token_id,
|
| 61 |
+
"pad_token_id": processor.tokenizer.eos_token_id,
|
| 62 |
+
}
|
| 63 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 64 |
+
thread.start()
|
| 65 |
+
|
| 66 |
+
buffer = ""
|
| 67 |
+
for new_text in streamer:
|
| 68 |
+
buffer += new_text
|
| 69 |
+
if len(buffer) > 1:
|
| 70 |
+
yield buffer
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
with gr.Blocks() as demo:
|
| 74 |
+
gr.HTML("<h1 class='gradio-heading'><center>MC-LLaVA 3B</center></h1>")
|
| 75 |
+
gr.HTML(
|
| 76 |
+
"<center><p class='gradio-sub-heading'>MC-LLaVA 3B is a model that can answer questions about small details in high-resolution images. Check out the <a href='https://huggingface.co/visheratin/MC-LLaVA-3b'>model card</a> for more details. If you have any questions or ideas hot to make the model better, <a href='https://x.com/visheratin'>let me know</a></p></center>"
|
| 77 |
+
)
|
| 78 |
+
with gr.Group():
|
| 79 |
+
with gr.Row():
|
| 80 |
+
prompt = gr.Textbox(
|
| 81 |
+
label="Question", placeholder="e.g. What is this?", scale=4
|
| 82 |
+
)
|
| 83 |
+
submit = gr.Button(
|
| 84 |
+
"Submit",
|
| 85 |
+
scale=1,
|
| 86 |
+
)
|
| 87 |
+
with gr.Row():
|
| 88 |
+
max_crops = gr.Slider(minimum=0, maximum=200, step=5, value=0, label="Max crops")
|
| 89 |
+
num_tokens = gr.Slider(minimum=728, maximum=2184, step=10, value=728, label="Number of image tokens")
|
| 90 |
+
with gr.Row():
|
| 91 |
+
img = gr.Image(type="pil", label="Upload or Drag an Image")
|
| 92 |
+
output = gr.TextArea(label="Answer")
|
| 93 |
+
|
| 94 |
+
submit.click(answer_question, [img, prompt, max_crops, num_tokens], output)
|
| 95 |
+
prompt.submit(answer_question, [img, prompt, max_crops, num_tokens], output)
|
| 96 |
+
|
| 97 |
+
demo.queue().launch(debug=True)
|