Spaces:
Sleeping
Sleeping
File size: 7,833 Bytes
69d8d00 e5c9a77 69d8d00 e5c9a77 69d8d00 e5c9a77 69d8d00 e5c9a77 69d8d00 e5c9a77 69d8d00 e5c9a77 69d8d00 e5c9a77 69d8d00 e5c9a77 69d8d00 e5c9a77 69d8d00 e5c9a77 69d8d00 e5c9a77 69d8d00 e5c9a77 69d8d00 e5c9a77 69d8d00 e5c9a77 508ee85 e5c9a77 69d8d00 e5c9a77 69d8d00 e5c9a77 69d8d00 e5c9a77 69d8d00 e5c9a77 69d8d00 e5c9a77 69d8d00 e5c9a77 69d8d00 e5c9a77 69d8d00 e5c9a77 69d8d00 e5c9a77 69d8d00 e5c9a77 69d8d00 e5c9a77 69d8d00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
# -- coding: utf-8 --
"""emotion-matcher.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1LTiGD09mHJRCtPkBO3f3XnYPACLCB_ro
## 1. Dataset
"""
import pandas as pd
# Define the file paths for each dataset split
splits = {
'train': 'simplified/train-00000-of-00001.parquet',
'validation': 'simplified/validation-00000-of-00001.parquet',
'test': 'simplified/test-00000-of-00001.parquet'
}
# Load the training set from HuggingFace Hub using the hf:// protocol
df = pd.read_parquet("hf://datasets/google-research-datasets/go_emotions/" + splits["train"])
# Preview the first few rows of the dataset
print(df.head())
# View dataset shape
print("Dataset shape:", df.shape)
# View basic column information
print("\nColumn names:", df.columns.tolist())
# View detailed info
df.info()
# Check for missing values
print("Missing values per column:")
print(df.isnull().sum())
# Check for duplicated rows (convert unhashable columns to string)
print("\nNumber of duplicated rows:")
print(df.astype(str).duplicated().sum())
# Check how many unique combinations of emotion labels exist
print("\nNumber of unique label combinations:")
print(df["labels"].apply(lambda x: tuple(x)).nunique())
# Compute text lengths in number of words
df["text_length"] = df["text"].apply(lambda x: len(x.split()))
# Plot histogram of text lengths
import matplotlib.pyplot as plt
plt.figure(figsize=(10,6))
plt.hist(df["text_length"], bins=50)
plt.title("Distribution of Text Lengths (in words)")
plt.xlabel("Number of words")
plt.ylabel("Number of samples")
plt.grid(True)
plt.show()
# Count how many emotion labels each text has
df["num_labels"] = df["labels"].apply(len)
# Plot distribution
plt.figure(figsize=(8,5))
df["num_labels"].value_counts().sort_index().plot(kind="bar")
plt.xlabel("Number of emotion labels")
plt.ylabel("Number of samples")
plt.title("Distribution of Emotion Labels per Sample")
plt.show()
# Count frequency of each individual emotion label
from collections import Counter
# Flatten the list of labels across all samples
all_labels = [label for labels in df["labels"] for label in labels]
label_counts = Counter(all_labels)
# Convert to DataFrame for plotting
emotion_freq = pd.DataFrame.from_dict(label_counts, orient='index', columns=['count'])
emotion_freq = emotion_freq.sort_values(by='count', ascending=False)
# Plot the frequency of each emotion
emotion_freq.plot(kind='bar', figsize=(15,5), legend=False)
plt.title("Frequency of Each Emotion Label")
plt.xlabel("Emotion Label ID")
plt.ylabel("Number of Occurrences")
plt.show()
# Create a binary matrix for emotions
import numpy as np
import seaborn as sns
num_labels = max([max(l.tolist()) if len(l) > 0 else 0 for l in df["labels"]]) + 1
emotion_matrix = np.zeros((len(df), num_labels), dtype=int)
for i, labels in enumerate(df["labels"]):
for label in labels:
emotion_matrix[i, label] = 1
# Compute co-occurrence matrix
co_occurrence = np.dot(emotion_matrix.T, emotion_matrix)
# Plot heatmap
plt.figure(figsize=(12, 10))
sns.heatmap(co_occurrence, cmap="Blues", linewidths=0.5)
plt.title("Emotion Co-occurrence Heatmap")
plt.xlabel("Emotion Label ID")
plt.ylabel("Emotion Label ID")
plt.show()
# Display 5 random rows
print("Sample text examples with emotion labels:")
print(df.sample(5)[["text", "labels"]])
# Define emotion label ID to name mapping manually (based on GoEmotions documentation)
id2label = [
'admiration', 'amusement', 'anger', 'annoyance', 'approval',
'caring', 'confusion', 'curiosity', 'desire', 'disappointment',
'disapproval', 'disgust', 'embarrassment', 'excitement', 'fear',
'gratitude', 'grief', 'joy', 'love', 'nervousness', 'optimism',
'pride', 'realization', 'relief', 'remorse', 'sadness', 'surprise',
'neutral'
]
def decode_labels(label_ids):
return [id2label[i] for i in label_ids]
# Display 5 random samples with readable label names
print("Sample text examples with emotion label names:")
sample_df = df.sample(5)
sample_df["label_names"] = sample_df["labels"].apply(decode_labels)
print(sample_df[["text", "label_names"]])
# Word cloud
from wordcloud import WordCloud
all_text = " ".join(df["text"])
wordcloud = WordCloud(width=800, height=400, background_color='white').generate(all_text)
plt.figure(figsize=(12, 6))
plt.imshow(wordcloud, interpolation="bilinear")
plt.axis("off")
plt.title("Most Frequent Words in All Text Samples")
plt.show()
# Clean the text data
import re
import string
def clean_text(text):
text = text.lower()
text = re.sub(r"\[.*?\]", "", text)
text = text.translate(str.maketrans('', '', string.punctuation))
text = re.sub(r"\d+", "", text)
text = re.sub(r"\s+", " ", text).strip()
return text
df["clean_text"] = df["text"].apply(clean_text)
print("Sample cleaned texts:")
print(df[["text", "clean_text"]].sample(5))
# Plot label distribution
label_counts = Counter([label for sublist in df["labels"] for label in sublist])
label_df = pd.DataFrame.from_dict(label_counts, orient="index", columns=["count"])
label_df.index.name = "label_id"
label_df = label_df.sort_index()
label_df["label_name"] = label_df.index.map(lambda i: id2label[i])
plt.figure(figsize=(14, 6))
sns.barplot(x="label_name", y="count", data=label_df)
plt.xticks(rotation=45, ha="right")
plt.title("Distribution of Emotion Labels in Training Set")
plt.xlabel("Emotion")
plt.ylabel("Frequency")
plt.tight_layout()
plt.show()
# Embeddings
from sentence_transformers import SentenceTransformer
import torch
model = SentenceTransformer('all-MiniLM-L6-v2')
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = model.to(device)
sample_df = df.sample(n=3000, random_state=42).reset_index(drop=True)
embeddings = model.encode(sample_df["clean_text"].tolist(), show_progress_bar=True, device=device)
sample_df["embedding"] = embeddings.tolist()
# t-SNE visualization
from sklearn.manifold import TSNE
X = np.array(sample_df["embedding"].tolist())
tsne = TSNE(n_components=2, random_state=42, perplexity=30)
X_embedded = tsne.fit_transform(X)
sample_df["x"] = X_embedded[:, 0]
sample_df["y"] = X_embedded[:, 1]
plt.figure(figsize=(10, 6))
plt.scatter(sample_df["x"], sample_df["y"], alpha=0.5)
plt.title("t-SNE Projection of Text Embeddings")
plt.xlabel("Component 1")
plt.ylabel("Component 2")
plt.show()
# KMeans Clustering
from sklearn.cluster import KMeans
num_clusters = 8
kmeans = KMeans(n_clusters=num_clusters, random_state=42)
sample_df["cluster"] = kmeans.fit_predict(X)
plt.figure(figsize=(10, 6))
scatter = plt.scatter(sample_df["x"], sample_df["y"], c=sample_df["cluster"], cmap='tab10', alpha=0.6)
plt.title(f"K-Means Clustering (k={num_clusters}) on t-SNE Projection")
plt.xlabel("Component 1")
plt.ylabel("Component 2")
plt.colorbar(scatter, label="Cluster")
plt.show()
# Recommendation Function
from sentence_transformers import util
EMBEDDINGS = torch.tensor(sample_df['embedding'].tolist(), device=device)
def recommend_similar_emotions(user_input):
if not user_input.strip():
return "Please enter some text."
user_embedding = model.encode(user_input, convert_to_tensor=True, device=device)
similarities = util.cos_sim(user_embedding, EMBEDDINGS)[0]
top_indices = similarities.argsort(descending=True)[:5]
results = []
for idx in top_indices:
row = sample_df.iloc[idx.item()]
results.append(f"{row['text']}\nEmotions: {row['labels']}")
return "\n\n".join(results)
# Gradio App
import gradio as gr
demo = gr.Interface(
fn=recommend_similar_emotions,
inputs=gr.Textbox(lines=2, placeholder="Type your situation or feeling..."),
outputs="text",
title="Emotion Matcher",
description="Describe how you feel, and get similar examples with emotion labels."
)
demo.launch() |