Spaces:
Paused
Paused
File size: 1,148 Bytes
d4b765e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch
import os
model_name = "whidbeysea/luther-phi3-merged"
offload_directory = "./offload_dir"
os.makedirs(offload_directory, exist_ok=True)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16, # Use bfloat16 for GPU
bnb_4bit_use_double_quant=True,
llm_int8_enable_fp32_cpu_offload=True,
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto", # Use auto to detect GPU
torch_dtype=None,
quantization_config=bnb_config,
offload_folder=offload_directory,
offload_state_dict=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
def chat(message, history):
prompt = f"<s>[INST] {message} [/INST]"
inputs = tokenizer(prompt, return_tensors="pt")
inputs = {k: v.to("cuda") for k, v in inputs.items()} # Move inputs to GPU
outputs = model.generate(**inputs, max_new_tokens=200)
return tokenizer.decode(outputs, skip_special_tokens=True)
gr.ChatInterface(chat).launch(share=True) |